#include "fips202.h" #include "ntt.h" #include "poly.h" #include "reduce.h" /************************************************* * Name: coeff_freeze * * Description: Fully reduces an integer modulo q in constant time * * Arguments: uint16_t x: input integer to be reduced * * Returns integer in {0,...,q-1} congruent to x modulo q **************************************************/ static uint16_t coeff_freeze(uint16_t x) { uint16_t m, r; int16_t c; r = x % NEWHOPE_Q; m = r - NEWHOPE_Q; c = m; c >>= 15; r = m ^ ((r ^ m)&c); return r; } /************************************************* * Name: flipabs * * Description: Computes |(x mod q) - Q/2| * * Arguments: uint16_t x: input coefficient * * Returns |(x mod q) - Q/2| **************************************************/ static uint16_t flipabs(uint16_t x) { int16_t r, m; r = coeff_freeze(x); r = r - NEWHOPE_Q / 2; m = r >> 15; return (r + m) ^ m; } /************************************************* * Name: poly_frombytes * * Description: De-serialization of a polynomial * * Arguments: - poly *r: pointer to output polynomial * - const unsigned char *a: pointer to input byte array **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_frombytes(poly *r, const unsigned char *a) { int i; for (i = 0; i < NEWHOPE_N / 4; i++) { r->coeffs[4 * i + 0] = a[7 * i + 0] | (((uint16_t)a[7 * i + 1] & 0x3f) << 8); r->coeffs[4 * i + 1] = (a[7 * i + 1] >> 6) | (((uint16_t)a[7 * i + 2]) << 2) | (((uint16_t)a[7 * i + 3] & 0x0f) << 10); r->coeffs[4 * i + 2] = (a[7 * i + 3] >> 4) | (((uint16_t)a[7 * i + 4]) << 4) | (((uint16_t)a[7 * i + 5] & 0x03) << 12); r->coeffs[4 * i + 3] = (a[7 * i + 5] >> 2) | (((uint16_t)a[7 * i + 6]) << 6); } } /************************************************* * Name: poly_tobytes * * Description: Serialization of a polynomial * * Arguments: - unsigned char *r: pointer to output byte array * - const poly *p: pointer to input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_tobytes(unsigned char *r, const poly *p) { int i; uint16_t t0, t1, t2, t3; for (i = 0; i < NEWHOPE_N / 4; i++) { t0 = coeff_freeze(p->coeffs[4 * i + 0]); t1 = coeff_freeze(p->coeffs[4 * i + 1]); t2 = coeff_freeze(p->coeffs[4 * i + 2]); t3 = coeff_freeze(p->coeffs[4 * i + 3]); r[7 * i + 0] = t0 & 0xff; r[7 * i + 1] = (unsigned char) ((t0 >> 8) | (t1 << 6)); r[7 * i + 2] = (unsigned char) ((t1 >> 2)); r[7 * i + 3] = (unsigned char) ((t1 >> 10) | (t2 << 4)); r[7 * i + 4] = (unsigned char) ((t2 >> 4)); r[7 * i + 5] = (unsigned char) ((t2 >> 12) | (t3 << 2)); r[7 * i + 6] = (unsigned char) ((t3 >> 6)); } } /************************************************* * Name: poly_compress * * Description: Compression and subsequent serialization of a polynomial * * Arguments: - unsigned char *r: pointer to output byte array * - const poly *p: pointer to input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_compress(unsigned char *r, const poly *p) { unsigned int i, j, k = 0; uint32_t t[8]; for (i = 0; i < NEWHOPE_N; i += 8) { for (j = 0; j < 8; j++) { t[j] = coeff_freeze(p->coeffs[i + j]); t[j] = (((t[j] << 3) + NEWHOPE_Q / 2) / NEWHOPE_Q) & 0x7; } r[k] = (unsigned char) (t[0] | (t[1] << 3) | (t[2] << 6)); r[k + 1] = (unsigned char) ((t[2] >> 2) | (t[3] << 1) | (t[4] << 4) | (t[5] << 7)); r[k + 2] = (unsigned char) ((t[5] >> 1) | (t[6] << 2) | (t[7] << 5)); k += 3; } } /************************************************* * Name: poly_decompress * * Description: De-serialization and subsequent decompression of a polynomial; * approximate inverse of poly_compress * * Arguments: - poly *r: pointer to output polynomial * - const unsigned char *a: pointer to input byte array **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_decompress(poly *r, const unsigned char *a) { unsigned int i, j; for (i = 0; i < NEWHOPE_N; i += 8) { r->coeffs[i + 0] = a[0] & 7; r->coeffs[i + 1] = (a[0] >> 3) & 7; r->coeffs[i + 2] = (a[0] >> 6) | ((a[1] << 2) & 4); r->coeffs[i + 3] = (a[1] >> 1) & 7; r->coeffs[i + 4] = (a[1] >> 4) & 7; r->coeffs[i + 5] = (a[1] >> 7) | ((a[2] << 1) & 6); r->coeffs[i + 6] = (a[2] >> 2) & 7; r->coeffs[i + 7] = (a[2] >> 5); a += 3; for (j = 0; j < 8; j++) { r->coeffs[i + j] = ((uint32_t)r->coeffs[i + j] * NEWHOPE_Q + 4) >> 3; } } } /************************************************* * Name: poly_frommsg * * Description: Convert 32-byte message to polynomial * * Arguments: - poly *r: pointer to output polynomial * - const unsigned char *msg: pointer to input message **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_frommsg(poly *r, const unsigned char *msg) { unsigned int i, j, mask; for (i = 0; i < NEWHOPE_SYMBYTES; i++) { for (j = 0; j < 8; j++) { mask = -((msg[i] >> j) & 1); r->coeffs[8 * i + j + 0] = mask & (NEWHOPE_Q / 2); r->coeffs[8 * i + j + 256] = mask & (NEWHOPE_Q / 2); r->coeffs[8 * i + j + 512] = mask & (NEWHOPE_Q / 2); r->coeffs[8 * i + j + 768] = mask & (NEWHOPE_Q / 2); } } } /************************************************* * Name: poly_tomsg * * Description: Convert polynomial to 32-byte message * * Arguments: - unsigned char *msg: pointer to output message * - const poly *x: pointer to input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_tomsg(unsigned char *msg, const poly *x) { unsigned int i; uint16_t t; for (i = 0; i < 32; i++) { msg[i] = 0; } for (i = 0; i < 256; i++) { t = flipabs(x->coeffs[i + 0]); t += flipabs(x->coeffs[i + 256]); t += flipabs(x->coeffs[i + 512]); t += flipabs(x->coeffs[i + 768]); t = ((t - NEWHOPE_Q)); t >>= 15; msg[i >> 3] |= t << (i & 7); } } /************************************************* * Name: poly_uniform * * Description: Sample a polynomial deterministically from a seed, * with output polynomial looking uniformly random * * Arguments: - poly *a: pointer to output polynomial * - const unsigned char *seed: pointer to input seed **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_uniform(poly *a, const unsigned char *seed) { unsigned int ctr = 0; uint16_t val; shake128ctx state; uint8_t buf[SHAKE128_RATE]; uint8_t extseed[NEWHOPE_SYMBYTES + 1]; int i, j; for (i = 0; i < NEWHOPE_SYMBYTES; i++) { extseed[i] = seed[i]; } for (i = 0; i < NEWHOPE_N / 64; i++) { /* generate a in blocks of 64 coefficients */ ctr = 0; extseed[NEWHOPE_SYMBYTES] = (unsigned char) i; /* domain-separate the 16 independent calls */ shake128_absorb(&state, extseed, NEWHOPE_SYMBYTES + 1); while (ctr < 64) { /* Very unlikely to run more than once */ shake128_squeezeblocks(buf, 1, &state); for (j = 0; j < SHAKE128_RATE && ctr < 64; j += 2) { val = (buf[j] | ((uint16_t) buf[j + 1] << 8)); if (val < 5 * NEWHOPE_Q) { a->coeffs[i * 64 + ctr] = val; ctr++; } } } } } /************************************************* * Name: hw * * Description: Compute the Hamming weight of a byte * * Arguments: - unsigned char a: input byte **************************************************/ static unsigned char hw(unsigned char a) { unsigned char i, r = 0; for (i = 0; i < 8; i++) { r += (a >> i) & 1; } return r; } /************************************************* * Name: poly_sample * * Description: Sample a polynomial deterministically from a seed and a nonce, * with output polynomial close to centered binomial distribution * with parameter k=8 * * Arguments: - poly *r: pointer to output polynomial * - const unsigned char *seed: pointer to input seed * - unsigned char nonce: one-byte input nonce **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_sample(poly *r, const unsigned char *seed, unsigned char nonce) { unsigned char buf[128], a, b; int i, j; unsigned char extseed[NEWHOPE_SYMBYTES + 2]; for (i = 0; i < NEWHOPE_SYMBYTES; i++) { extseed[i] = seed[i]; } extseed[NEWHOPE_SYMBYTES] = nonce; for (i = 0; i < NEWHOPE_N / 64; i++) { /* Generate noise in blocks of 64 coefficients */ extseed[NEWHOPE_SYMBYTES + 1] = (unsigned char) i; shake256(buf, 128, extseed, NEWHOPE_SYMBYTES + 2); for (j = 0; j < 64; j++) { a = buf[2 * j]; b = buf[2 * j + 1]; r->coeffs[64 * i + j] = hw(a) + NEWHOPE_Q - hw(b); } } } /************************************************* * Name: poly_pointwise * * Description: Multiply two polynomials pointwise (i.e., coefficient-wise). * * Arguments: - poly *r: pointer to output polynomial * - const poly *a: pointer to first input polynomial * - const poly *b: pointer to second input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_mul_pointwise(poly *r, const poly *a, const poly *b) { int i; uint16_t t; for (i = 0; i < NEWHOPE_N; i++) { t = PQCLEAN_NEWHOPE1024CCA_CLEAN_montgomery_reduce(3186 * b->coeffs[i]); /* t is now in Montgomery domain */ r->coeffs[i] = PQCLEAN_NEWHOPE1024CCA_CLEAN_montgomery_reduce(a->coeffs[i] * t); /* r->coeffs[i] is back in normal domain */ } } /************************************************* * Name: poly_add * * Description: Add two polynomials * * Arguments: - poly *r: pointer to output polynomial * - const poly *a: pointer to first input polynomial * - const poly *b: pointer to second input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_add(poly *r, const poly *a, const poly *b) { int i; for (i = 0; i < NEWHOPE_N; i++) { r->coeffs[i] = (a->coeffs[i] + b->coeffs[i]) % NEWHOPE_Q; } } /************************************************* * Name: poly_sub * * Description: Subtract two polynomials * * Arguments: - poly *r: pointer to output polynomial * - const poly *a: pointer to first input polynomial * - const poly *b: pointer to second input polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_sub(poly *r, const poly *a, const poly *b) { int i; for (i = 0; i < NEWHOPE_N; i++) { r->coeffs[i] = (a->coeffs[i] + 3 * NEWHOPE_Q - b->coeffs[i]) % NEWHOPE_Q; } } /************************************************* * Name: poly_ntt * * Description: Forward NTT transform of a polynomial in place * Input is assumed to have coefficients in bitreversed order * Output has coefficients in normal order * * Arguments: - poly *r: pointer to in/output polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_ntt(poly *r) { PQCLEAN_NEWHOPE1024CCA_CLEAN_mul_coefficients(r->coeffs, PQCLEAN_NEWHOPE1024CCA_CLEAN_gammas_bitrev_montgomery); PQCLEAN_NEWHOPE1024CCA_CLEAN_ntt((uint16_t *)r->coeffs, PQCLEAN_NEWHOPE1024CCA_CLEAN_gammas_bitrev_montgomery); } /************************************************* * Name: poly_invntt * * Description: Inverse NTT transform of a polynomial in place * Input is assumed to have coefficients in normal order * Output has coefficients in normal order * * Arguments: - poly *r: pointer to in/output polynomial **************************************************/ void PQCLEAN_NEWHOPE1024CCA_CLEAN_poly_invntt(poly *r) { PQCLEAN_NEWHOPE1024CCA_CLEAN_bitrev_vector(r->coeffs); PQCLEAN_NEWHOPE1024CCA_CLEAN_ntt((uint16_t *)r->coeffs, PQCLEAN_NEWHOPE1024CCA_CLEAN_omegas_inv_bitrev_montgomery); PQCLEAN_NEWHOPE1024CCA_CLEAN_mul_coefficients(r->coeffs, PQCLEAN_NEWHOPE1024CCA_CLEAN_gammas_inv_montgomery); }