#include "gf2x.h" #include "parameters.h" #include #include #include /** * \file gf2x.c * \brief AVX2 implementation of multiplication of two polynomials */ // sizes for Toom-Cook #define T_TM3_3W_256 32 #define T_TM3_3W_64 128 #define VEC_N_SIZE_256 CEIL_DIVIDE(PARAM_N, 256) /*!< The number of needed vectors to store PARAM_N bits*/ __m256i a1_times_a2[2 * VEC_N_SIZE_256 + 1]; uint64_t bloc64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight uint64_t bit64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight static inline void reduce(uint64_t *o, const uint64_t *a); static inline void karat_mult_1(__m128i *C, __m128i *A, __m128i *B); static inline void karat_mult_2(__m256i *C, __m256i *A, __m256i *B); static inline void karat_mult_4(__m256i *C, __m256i *A, __m256i *B); static inline void karat_mult_8(__m256i *C, __m256i *A, __m256i *B); static inline void karat_mult_16(__m256i *C, __m256i *A, __m256i *B); static inline void karat_mult_32(__m256i *C, __m256i *A, __m256i *B); static inline void divByXplus1(__m256i *out, __m256i *in, int size); static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B); /** * @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$ * * This function computes the modular reduction of the polynomial a(x) * * @param[out] o Pointer to the result * @param[in] a Pointer to the polynomial a(x) */ static inline void reduce(uint64_t *o, const uint64_t *a) { uint64_t r; uint64_t carry; for (uint32_t i = 0 ; i < VEC_N_SIZE_64 ; i++) { r = a[i + VEC_N_SIZE_64 - 1] >> (PARAM_N & 63); carry = (uint64_t) (a[i + VEC_N_SIZE_64] << (64 - (PARAM_N & 63))); o[i] = a[i] ^ r ^ carry; } o[VEC_N_SIZE_64 - 1] &= RED_MASK; } /** * @brief Compute C(x) = A(x)*B(x) * A(x) and B(x) are stored in 128-bit registers * This function computes A(x)*B(x) using Karatsuba * * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_1(__m128i *C, __m128i *A, __m128i *B) { __m128i D1[2]; __m128i D0[2], D2[2]; __m128i Al = _mm_loadu_si128(A); __m128i Ah = _mm_loadu_si128(A + 1); __m128i Bl = _mm_loadu_si128(B); __m128i Bh = _mm_loadu_si128(B + 1); // Compute Al.Bl=D0 __m128i DD0 = _mm_clmulepi64_si128(Al, Bl, 0); __m128i DD2 = _mm_clmulepi64_si128(Al, Bl, 0x11); __m128i AAlpAAh = _mm_xor_si128(Al, _mm_shuffle_epi32(Al, 0x4e)); __m128i BBlpBBh = _mm_xor_si128(Bl, _mm_shuffle_epi32(Bl, 0x4e)); __m128i DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0)); D0[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1)); D0[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128())); // Compute Ah.Bh=D2 DD0 = _mm_clmulepi64_si128(Ah, Bh, 0); DD2 = _mm_clmulepi64_si128(Ah, Bh, 0x11); AAlpAAh = _mm_xor_si128(Ah, _mm_shuffle_epi32(Ah, 0x4e)); BBlpBBh = _mm_xor_si128(Bh, _mm_shuffle_epi32(Bh, 0x4e)); DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0)); D2[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1)); D2[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128())); // Compute AlpAh.BlpBh=D1 // Initialisation of AlpAh and BlpBh __m128i AlpAh = _mm_xor_si128(Al, Ah); __m128i BlpBh = _mm_xor_si128(Bl, Bh); DD0 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0); DD2 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0x11); AAlpAAh = _mm_xor_si128(AlpAh, _mm_shuffle_epi32(AlpAh, 0x4e)); BBlpBBh = _mm_xor_si128(BlpBh, _mm_shuffle_epi32(BlpBh, 0x4e)); DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0)); D1[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1)); D1[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128())); // Final comutation of C __m128i middle = _mm_xor_si128(D0[1], D2[0]); C[0] = D0[0]; C[1] = middle ^ D0[0] ^ D1[0]; C[2] = middle ^ D1[1] ^ D2[1]; C[3] = D2[1]; } /** * @brief Compute C(x) = A(x)*B(x) * * This function computes A(x)*B(x) using Karatsuba * A(x) and B(x) are stored in 256-bit registers * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_2(__m256i *C, __m256i *A, __m256i *B) { __m256i D0[2], D1[2], D2[2], SAA, SBB; __m128i *A128 = (__m128i *)A, *B128 = (__m128i *)B; karat_mult_1((__m128i *) D0, A128, B128); karat_mult_1((__m128i *) D2, A128 + 2, B128 + 2); SAA = A[0] ^ A[1]; SBB = B[0] ^ B[1]; karat_mult_1((__m128i *) D1, (__m128i *) &SAA, (__m128i *) &SBB); __m256i middle = _mm256_xor_si256(D0[1], D2[0]); C[0] = D0[0]; C[1] = middle ^ D0[0] ^ D1[0]; C[2] = middle ^ D1[1] ^ D2[1]; C[3] = D2[1]; } /** * @brief Compute C(x) = A(x)*B(x) * * This function computes A(x)*B(x) using Karatsuba * A(x) and B(x) are stored in 256-bit registers * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_4(__m256i *C, __m256i *A, __m256i *B) { __m256i D0[4], D1[4], D2[4], SAA[2], SBB[2]; karat_mult_2( D0, A, B); karat_mult_2(D2, A + 2, B + 2); SAA[0] = A[0] ^ A[2]; SBB[0] = B[0] ^ B[2]; SAA[1] = A[1] ^ A[3]; SBB[1] = B[1] ^ B[3]; karat_mult_2( D1, SAA, SBB); __m256i middle0 = _mm256_xor_si256(D0[2], D2[0]); __m256i middle1 = _mm256_xor_si256(D0[3], D2[1]); C[0] = D0[0]; C[1] = D0[1]; C[2] = middle0 ^ D0[0] ^ D1[0]; C[3] = middle1 ^ D0[1] ^ D1[1]; C[4] = middle0 ^ D1[2] ^ D2[2]; C[5] = middle1 ^ D1[3] ^ D2[3]; C[6] = D2[2]; C[7] = D2[3]; } /** * @brief Compute C(x) = A(x)*B(x) * * This function computes A(x)*B(x) using Karatsuba * A(x) and B(x) are stored in 256-bit registers * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_8(__m256i *C, __m256i *A, __m256i *B) { __m256i D0[8], D1[8], D2[8], SAA[4], SBB[4]; karat_mult_4( D0, A, B); karat_mult_4(D2, A + 4, B + 4); for (int32_t i = 0 ; i < 4 ; i++) { int is = i + 4; SAA[i] = A[i] ^ A[is]; SBB[i] = B[i] ^ B[is]; } karat_mult_4(D1, SAA, SBB); for (int32_t i = 0 ; i < 4 ; i++) { int32_t is = i + 4; int32_t is2 = is + 4; int32_t is3 = is2 + 4; __m256i middle = _mm256_xor_si256(D0[is], D2[i]); C[i] = D0[i]; C[is] = middle ^ D0[i] ^ D1[i]; C[is2] = middle ^ D1[is] ^ D2[is]; C[is3] = D2[is]; } } /** * @brief Compute C(x) = A(x)*B(x) * * This function computes A(x)*B(x) using Karatsuba * A(x) and B(x) are stored in 256-bit registers * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_16(__m256i *C, __m256i *A, __m256i *B) { __m256i D0[16], D1[16], D2[16], SAA[8], SBB[8]; karat_mult_8( D0, A, B); karat_mult_8(D2, A + 8, B + 8); for (int32_t i = 0 ; i < 8 ; i++) { int32_t is = i + 8; SAA[i] = A[i] ^ A[is]; SBB[i] = B[i] ^ B[is]; } karat_mult_8( D1, SAA, SBB); for (int32_t i = 0 ; i < 8 ; i++) { int32_t is = i + 8; int32_t is2 = is + 8; int32_t is3 = is2 + 8; __m256i middle = _mm256_xor_si256(D0[is], D2[i]); C[i] = D0[i]; C[is] = middle ^ D0[i] ^ D1[i]; C[is2] = middle ^ D1[is] ^ D2[is]; C[is3] = D2[is]; } } /** * @brief Compute C(x) = A(x)*B(x) * * This function computes A(x)*B(x) using Karatsuba * A(x) and B(x) are stored in 256-bit registers * @param[out] C Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static inline void karat_mult_32(__m256i *C, __m256i *A, __m256i *B) { __m256i D0[32], D1[32], D2[32], SAA[16], SBB[16]; karat_mult_16( D0, A, B); karat_mult_16(D2, A + 16, B + 16); for (int32_t i = 0 ; i < 16 ; i++) { int is = i + 16; SAA[i] = A[i] ^ A[is]; SBB[i] = B[i] ^ B[is]; } karat_mult_16( D1, SAA, SBB); for (int32_t i = 0 ; i < 16 ; i++) { int32_t is = i + 16; int32_t is2 = is + 16; int32_t is3 = is2 + 16; __m256i middle = _mm256_xor_si256(D0[is], D2[i]); C[i] = D0[i]; C[is] = middle ^ D0[i] ^ D1[i]; C[is2] = middle ^ D1[is] ^ D2[is]; C[is3] = D2[is]; } } /** * @brief Compute B(x) = A(x)/(x+1) * * This function computes A(x)/(x+1) using a Quercia like algorithm * @param[out] out Pointer to the result * @param[in] in Pointer to the polynomial A(x) * @param[in] size used to define the number of coeeficients of A */ static inline void divByXplus1(__m256i *out, __m256i *in, int size) { uint64_t *A = (uint64_t *) in; uint64_t *B = (uint64_t *) out; B[0] = A[0]; for (int32_t i = 1 ; i < 2 * (size << 2) ; i++) { B[i] = B[i - 1] ^ A[i]; } } /** * @brief Compute C(x) = A(x)*B(x) using TOOM3Mult * * This function computes A(x)*B(x) using TOOM-COOK3 Multiplication * last multiplication are done using Karatsuba * @param[out] Out Pointer to the result * @param[in] A Pointer to the polynomial A(x) * @param[in] B Pointer to the polynomial B(x) */ static void TOOM3Mult(__m256i *Out, const uint64_t *A, const uint64_t *B) { static __m256i U0[T_TM3_3W_256], V0[T_TM3_3W_256], U1[T_TM3_3W_256], V1[T_TM3_3W_256], U2[T_TM3_3W_256], V2[T_TM3_3W_256]; static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)]; static __m256i tmp[2 * (T_TM3_3W_256)]; static __m256i ro256[6 * (T_TM3_3W_256)]; const __m256i zero = _mm256_setzero_si256(); int32_t T2 = T_TM3_3W_64 << 1; for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) { int32_t i4 = i << 2; int32_t i42 = i4 - 2; U0[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4])); V0[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4])); U1[i] = _mm256_lddqu_si256((__m256i const *)(& A[i42 + T_TM3_3W_64])); V1[i] = _mm256_lddqu_si256((__m256i const *)(& B[i42 + T_TM3_3W_64])); U2[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4 + T2 - 4])); V2[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4 + T2 - 4])); } for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) { int32_t i4 = i << 2; int32_t i41 = i4 + 1; U0[i] = _mm256_set_epi64x(0, 0, A[i41], A[i4]); V0[i] = _mm256_set_epi64x(0, 0, B[i41], B[i4]); U1[i] = _mm256_set_epi64x(0, 0, A[i41 + T_TM3_3W_64 - 2], A[i4 + T_TM3_3W_64 - 2]); V1[i] = _mm256_set_epi64x(0, 0, B[i41 + T_TM3_3W_64 - 2], B[i4 + T_TM3_3W_64 - 2]); U2[i] = _mm256_set_epi64x(0, 0, A[i4 - 3 + T2], A[i4 - 4 + T2]); V2[i] = _mm256_set_epi64x(0, 0, B[i4 - 3 + T2], B[i4 - 4 + T2]); } // Evaluation phase : x= X^64 // P(X): P0=(0); P1=(1); P2=(x); P3=(1+x); P4=(\infty) // Evaluation: 5*2 add, 2*2 shift; 5 mul (n) //W3 = U2 + U1 + U0 ; W2 = V2 + V1 + V0 for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) { W3[i] = U0[i] ^ U1[i] ^ U2[i]; W2[i] = V0[i] ^ V1[i] ^ V2[i]; } //W1 = W2 * W3 karat_mult_32( W1, W2, W3); //W0 =(U1 + U2*x)*x ; W4 =(V1 + V2*x)*x (SIZE = T_TM3_3W_256 !) int64_t *U1_64 = ((int64_t *) U1); int64_t *U2_64 = ((int64_t *) U2); int64_t *V1_64 = ((int64_t *) V1); int64_t *V2_64 = ((int64_t *) V2); W0[0] = _mm256_set_epi64x(U1_64[2] ^ U2_64[1], U1_64[1] ^ U2_64[0], U1_64[0], 0); W4[0] = _mm256_set_epi64x(V1_64[2] ^ V2_64[1], V1_64[1] ^ V2_64[0], V1_64[0], 0); U1_64 = ((int64_t *) U1); U2_64 = ((int64_t *) U2); V1_64 = ((int64_t *) V1); V2_64 = ((int64_t *) V2); for (int32_t i = 1 ; i < T_TM3_3W_256 ; i++) { int i4 = i << 2; W0[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 - 1])); W0[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 - 2])); W4[i] = _mm256_lddqu_si256((__m256i const *)(& V1_64[i4 - 1])); W4[i] ^= _mm256_lddqu_si256((__m256i const *)(& V2_64[i4 - 2])); } //W3 = W3 + W0 ; W2 = W2 + W4 for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) { W3[i] ^= W0[i]; W2[i] ^= W4[i]; } //W0 = W0 + U0 ; W4 = W4 + V0 for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) { W0[i] ^= U0[i]; W4[i] ^= V0[i]; } //W3 = W3 * W2 ; W2 = W0 * W4 karat_mult_32(tmp, W3, W2); for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) { W3[i] = tmp[i]; } karat_mult_32(W2, W0, W4); //W4 = U2 * V2 ; W0 = U0 * V0 karat_mult_32(W4, U2, V2); karat_mult_32(W0, U0, V0); // Interpolation phase // 9 add, 1 shift, 1 Smul, 2 Sdiv (2n) //W3 = W3 + W2 for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) { W3[i] ^= W2[i]; } //W1 = W1 + W0 for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) { W1[i] ^= W0[i]; } //W2 =(W2 + W0)/x -> x = X^64 U1_64 = ((int64_t *) W2); U2_64 = ((int64_t *) W0); for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) ; i++) { int32_t i4 = i << 2; W2[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 + 1])); W2[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 + 1])); } //W2 =(W2 + W3 + W4*(x^3+1))/(x+1) U1_64 = ((int64_t *) W4); __m256i *U1_256 = (__m256i *) (U1_64 + 1); tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ _mm256_set_epi64x(U1_64[0], 0, 0, 0); for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]); } divByXplus1(W2, tmp, T_TM3_3W_256); W2[2 * (T_TM3_3W_256) - 1] = zero; //W3 =(W3 + W1)/(x*(x+1)) U1_64 = (int64_t *) W3; U1_256 = (__m256i *) (U1_64 + 1); U2_64 = (int64_t *) W1; __m256i *U2_256 = (__m256i *) (U2_64 + 1); for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) - 1 ; i++) { tmp[i] = _mm256_lddqu_si256(&U1_256[i]) ^ _mm256_lddqu_si256(&U2_256[i]); } divByXplus1(W3, tmp, T_TM3_3W_256); W3[2 * (T_TM3_3W_256) - 1] = zero; //W1 = W1 + W4 + W2 for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) { W1[i] ^= W2[i] ^ W4[i]; } //W2 = W2 + W3 for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) { W2[i] ^= W3[i]; } // Recomposition //W = W0+ W1*x+ W2*x^2+ W3*x^3 + W4*x^4 //W0, W1, W4 of size 2*T_TM3_3W_256, W2 and W3 of size 2*(T_TM3_3W_256) for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) { ro256[i] = W0[i]; ro256[i + 2 * T_TM3_3W_256 - 1] = W2[i]; ro256[i + 4 * T_TM3_3W_256 - 2] = W4[i]; } ro256[(T_TM3_3W_256 << 1) - 1] = W0[(T_TM3_3W_256 << 1) - 1] ^ W2[0]; ro256[(T_TM3_3W_256 << 2) - 2] = W2[(T_TM3_3W_256 << 1) - 1] ^ W4[0]; ro256[(T_TM3_3W_256 * 6) - 3] = W4[(T_TM3_3W_256 << 1) - 1]; U1_64 = ((int64_t *) &ro256[T_TM3_3W_256]); U1_256 = (__m256i *) (U1_64 - 2); U2_64 = ((int64_t *) &ro256[3 * T_TM3_3W_256 - 1]); U2_256 = (__m256i *) (U2_64 - 2); for (int32_t i = 0 ; i < T_TM3_3W_256 << 1 ; i++) { _mm256_storeu_si256(&U1_256[i], W1[i] ^ _mm256_lddqu_si256(&U1_256[i])); _mm256_storeu_si256(&U2_256[i], W3[i] ^ _mm256_loadu_si256(&U2_256[i])); } for (int32_t i = 0 ; i < 2 * VEC_N_SIZE_256 + 1 ; i++) { _mm256_storeu_si256(&Out[i], ro256[i]); } } /** * @brief Multiply two polynomials modulo \f$ X^n - 1\f$. * * This functions multiplies a sparse polynomial a1 (of Hamming weight equal to weight) * and a dense polynomial a2. The multiplication is done modulo \f$ X^n - 1\f$. * * @param[out] o Pointer to the result * @param[in] a1 Pointer to a polynomial * @param[in] a2 Pointer to a polynomial */ void PQCLEAN_HQCRMRS128_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2) { TOOM3Mult(a1_times_a2, a1, a2); reduce(o, (uint64_t *)a1_times_a2); // clear all memset(a1_times_a2, 0, (2 * VEC_N_SIZE_256 + 1) * sizeof(__m256i)); }