#include "api.h" #include "fips202.h" #include "hqc.h" #include "nistseedexpander.h" #include "parameters.h" #include "parsing.h" #include "randombytes.h" #include "sha2.h" #include "vector.h" #include #include /** * @file kem.c * @brief Implementation of api.h */ /** * @brief Keygen of the HQC_KEM IND_CAA2 scheme * * The public key is composed of the syndrome s as well as the seed used to generate the vector h. * * The secret key is composed of the seed used to generate vectors x and y. * As a technicality, the public key is appended to the secret key in order to respect NIST API. * * @param[out] pk String containing the public key * @param[out] sk String containing the secret key * @returns 0 if keygen is successful */ int PQCLEAN_HQCRMRS256_AVX2_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) { PQCLEAN_HQCRMRS256_AVX2_hqc_pke_keygen(pk, sk); return 0; } /** * @brief Encapsulation of the HQC_KEM IND_CAA2 scheme * * @param[out] ct String containing the ciphertext * @param[out] ss String containing the shared secret * @param[in] pk String containing the public key * @returns 0 if encapsulation is successful */ int PQCLEAN_HQCRMRS256_AVX2_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) { uint8_t theta[SHA512_BYTES] = {0}; uint64_t m[VEC_K_SIZE_64] = {0}; uint64_t u[VEC_N_256_SIZE_64] = {0}; uint64_t v[VEC_N1N2_256_SIZE_64] = {0}; unsigned char d[SHA512_BYTES] = {0}; unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; // Computing m PQCLEAN_HQCRMRS256_AVX2_vect_set_random_from_randombytes(m); // Computing theta sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); // Encrypting m PQCLEAN_HQCRMRS256_AVX2_hqc_pke_encrypt(u, v, m, theta, pk); // Computing d sha512(d, (unsigned char *) m, VEC_K_SIZE_BYTES); // Computing shared secret memcpy(mc, m, VEC_K_SIZE_BYTES); memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES); memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); // Computing ciphertext PQCLEAN_HQCRMRS256_AVX2_hqc_ciphertext_to_string(ct, u, v, d); return 0; } /** * @brief Decapsulation of the HQC_KEM IND_CAA2 scheme * * @param[out] ss String containing the shared secret * @param[in] ct String containing the cipĥertext * @param[in] sk String containing the secret key * @returns 0 if decapsulation is successful, -1 otherwise */ int PQCLEAN_HQCRMRS256_AVX2_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) { int8_t result = -1; uint64_t u[VEC_N_256_SIZE_64] = {0}; uint64_t v[VEC_N1N2_256_SIZE_64] = {0}; unsigned char d[SHA512_BYTES] = {0}; unsigned char pk[PUBLIC_KEY_BYTES] = {0}; uint64_t m[VEC_K_SIZE_64] = {0}; uint8_t theta[SHA512_BYTES] = {0}; uint64_t u2[VEC_N_256_SIZE_64] = {0}; uint64_t v2[VEC_N1N2_256_SIZE_64] = {0}; unsigned char d2[SHA512_BYTES] = {0}; unsigned char mc[VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES] = {0}; // Retrieving u, v and d from ciphertext PQCLEAN_HQCRMRS256_AVX2_hqc_ciphertext_from_string(u, v, d, ct); // Retrieving pk from sk memcpy(pk, sk + SEED_BYTES, PUBLIC_KEY_BYTES); // Decryting PQCLEAN_HQCRMRS256_AVX2_hqc_pke_decrypt(m, u, v, sk); // Computing theta sha3_512(theta, (uint8_t *) m, VEC_K_SIZE_BYTES); // Encrypting m' PQCLEAN_HQCRMRS256_AVX2_hqc_pke_encrypt(u2, v2, m, theta, pk); // Computing d' sha512(d2, (unsigned char *) m, VEC_K_SIZE_BYTES); // Computing shared secret memcpy(mc, m, VEC_K_SIZE_BYTES); memcpy(mc + VEC_K_SIZE_BYTES, u, VEC_N_SIZE_BYTES); memcpy(mc + VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES, v, VEC_N1N2_SIZE_BYTES); sha512(ss, mc, VEC_K_SIZE_BYTES + VEC_N_SIZE_BYTES + VEC_N1N2_SIZE_BYTES); // Abort if c != c' or d != d' result = (PQCLEAN_HQCRMRS256_AVX2_vect_compare(u, u2, VEC_N_SIZE_BYTES) == 0 && PQCLEAN_HQCRMRS256_AVX2_vect_compare(v, v2, VEC_N1N2_SIZE_BYTES) == 0 && PQCLEAN_HQCRMRS256_AVX2_vect_compare((uint64_t *)d, (uint64_t *)d2, SHA512_BYTES) == 0); for (size_t i = 0 ; i < SHARED_SECRET_BYTES ; i++) { ss[i] = result * ss[i]; } result--; return result; }