#include #include #include "fips202x4.h" #include "ntt.h" #include "nttconsts.h" #include "params.h" #include "poly.h" #include "reduce.h" #include "rejsample.h" #include "rounding.h" #include "symmetric.h" /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_reduce * * Description: Reduce all coefficients of input polynomial to representative * in [0,2*Q[. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_reduce(poly *a) { PQCLEAN_DILITHIUM4_AVX2_reduce_avx(a->coeffs); } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_csubq * * Description: For all coefficients of input polynomial subtract Q if * coefficient is bigger than Q. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_csubq(poly *a) { PQCLEAN_DILITHIUM4_AVX2_csubq_avx(a->coeffs); } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_freeze * * Description: Reduce all coefficients of the polynomial to standard * representatives. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_freeze(poly *a) { PQCLEAN_DILITHIUM4_AVX2_reduce_avx(a->coeffs); PQCLEAN_DILITHIUM4_AVX2_csubq_avx(a->coeffs); } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_add * * Description: Add polynomials. No modular reduction is performed. * * Arguments: - poly *c: pointer to output polynomial * - const poly *a: pointer to first summand * - const poly *b: pointer to second summand **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_add(poly *c, const poly *a, const poly *b) { __m256i vec0, vec1; for (size_t i = 0; i < N / 8; i++) { vec0 = _mm256_load_si256(&a->coeffs_x8[i]); vec1 = _mm256_load_si256(&b->coeffs_x8[i]); vec0 = _mm256_add_epi32(vec0, vec1); _mm256_store_si256(&c->coeffs_x8[i], vec0); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_sub * * Description: Subtract polynomials. Assumes coefficients of second input * polynomial to be less than 2*Q. No modular reduction is * performed. * * Arguments: - poly *c: pointer to output polynomial * - const poly *a: pointer to first input polynomial * - const poly *b: pointer to second input polynomial to be * subtraced from first input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_sub(poly *c, const poly *a, const poly *b) { __m256i vec0, vec1; const __m256i twoq = _mm256_load_si256(_PQCLEAN_DILITHIUM4_AVX2_8x2q.as_vec); for (size_t i = 0; i < N / 8; i++) { vec0 = _mm256_load_si256(&a->coeffs_x8[i]); vec1 = _mm256_load_si256(&b->coeffs_x8[i]); vec0 = _mm256_add_epi32(vec0, twoq); vec0 = _mm256_sub_epi32(vec0, vec1); _mm256_store_si256(&c->coeffs_x8[i], vec0); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_shiftl * * Description: Multiply polynomial by 2^D without modular reduction. Assumes * input coefficients to be less than 2^{32-D}. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_shiftl(poly *a) { __m256i vec; for (size_t i = 0; i < N / 8; i++) { vec = _mm256_load_si256(&a->coeffs_x8[i]); vec = _mm256_slli_epi32(vec, D); _mm256_store_si256(&a->coeffs_x8[i], vec); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_ntt * * Description: Forward NTT. Output coefficients can be up to 16*Q larger than * input coefficients. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_ntt(poly *a) { ALIGNED_UINT64(N) tmp; for (size_t i = 0; i < N / 32; ++i) { PQCLEAN_DILITHIUM4_AVX2_ntt_levels0t2_avx(tmp.as_arr + 4 * i, a->coeffs + 4 * i, PQCLEAN_DILITHIUM4_AVX2_zetas.as_arr + 1); } for (size_t i = 0; i < N / 32; ++i) { PQCLEAN_DILITHIUM4_AVX2_ntt_levels3t8_avx(a->coeffs + 32 * i, tmp.as_arr + 32 * i, PQCLEAN_DILITHIUM4_AVX2_zetas.as_arr + 8 + 31 * i); } } /************************************************* * Name: poly_invntt_montgomery * * Description: Inverse NTT and multiplication with 2^{32}. Input coefficients * need to be less than 2*Q. Output coefficients are less than 2*Q. * * Arguments: - poly *a: pointer to input/output polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_invntt_montgomery(poly *a) { ALIGNED_UINT64(N) tmp; for (size_t i = 0; i < N / 32; i++) { PQCLEAN_DILITHIUM4_AVX2_invntt_levels0t4_avx(tmp.as_arr + 32 * i, a->coeffs + 32 * i, PQCLEAN_DILITHIUM4_AVX2_zetas_inv.as_arr + 31 * i); } for (size_t i = 0; i < N / 32; i++) { PQCLEAN_DILITHIUM4_AVX2_invntt_levels5t7_avx(a->coeffs + 4 * i, tmp.as_arr + 4 * i, PQCLEAN_DILITHIUM4_AVX2_zetas_inv.as_arr + 248); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_pointwise_invmontgomery * * Description: Pointwise multiplication of polynomials in NTT domain * representation and multiplication of resulting polynomial * with 2^{-32}. Output coefficients are less than 2*Q if input * coefficient are less than 22*Q. * * Arguments: - poly *c: pointer to output polynomial * - const poly *a: pointer to first input polynomial * - const poly *b: pointer to second input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_pointwise_invmontgomery(poly *c, const poly *a, const poly *b) { PQCLEAN_DILITHIUM4_AVX2_pointwise_avx(c->coeffs, a->coeffs, b->coeffs); } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_power2round * * Description: For all coefficients c of the input polynomial, * compute c0, c1 such that c mod Q = c1*2^D + c0 * with -2^{D-1} < c0 <= 2^{D-1}. Assumes coefficients to be * standard representatives. * * Arguments: - poly *a1: pointer to output polynomial with coefficients c1 * - poly *a0: pointer to output polynomial with coefficients Q + a0 * - const poly *v: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_power2round(poly *restrict a1, poly *restrict a0, const poly *restrict a) { for (size_t i = 0; i < N; ++i) { a1->coeffs[i] = PQCLEAN_DILITHIUM4_AVX2_power2round(a->coeffs[i], &a0->coeffs[i]); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_decompose * * Description: For all coefficients c of the input polynomial, * compute high and low bits c0, c1 such c mod Q = c1*ALPHA + c0 * with -ALPHA/2 < c0 <= ALPHA/2 except c1 = (Q-1)/ALPHA where we * set c1 = 0 and -ALPHA/2 <= c0 = c mod Q - Q < 0. * Assumes coefficients to be standard representatives. * * Arguments: - poly *a1: pointer to output polynomial with coefficients c1 * - poly *a0: pointer to output polynomial with coefficients Q + a0 * - const poly *c: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_decompose( poly *restrict a1, poly *restrict a0, const poly *restrict a) { for (size_t i = 0; i < N; ++i) { a1->coeffs[i] = PQCLEAN_DILITHIUM4_AVX2_decompose(a->coeffs[i], &a0->coeffs[i]); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_make_hint * * Description: Compute hint polynomial. The coefficients of which indicate * whether the low bits of the corresponding coefficient of * the input polynomial overflow into the high bits. * * Arguments: - poly *h: pointer to output hint polynomial * - const poly *a0: pointer to low part of input polynomial * - const poly *a1: pointer to high part of input polynomial * * Returns number of 1 bits. **************************************************/ uint32_t PQCLEAN_DILITHIUM4_AVX2_poly_make_hint( poly *restrict h, const poly *restrict a0, const poly *restrict a1) { uint32_t s = 0; for (size_t i = 0; i < N; ++i) { h->coeffs[i] = PQCLEAN_DILITHIUM4_AVX2_make_hint(a0->coeffs[i], a1->coeffs[i]); s += h->coeffs[i]; } return s; } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_use_hint * * Description: Use hint polynomial to correct the high bits of a polynomial. * * Arguments: - poly *a: pointer to output polynomial with corrected high bits * - const poly *b: pointer to input polynomial * - const poly *h: pointer to input hint polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_poly_use_hint( poly *restrict a, const poly *restrict b, const poly *restrict h) { for (size_t i = 0; i < N; ++i) { a->coeffs[i] = PQCLEAN_DILITHIUM4_AVX2_use_hint(b->coeffs[i], h->coeffs[i]); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_chknorm * * Description: Check infinity norm of polynomial against given bound. * Assumes input coefficients to be standard representatives. * * Arguments: - const poly *a: pointer to polynomial * - uint32_t B: norm bound * * Returns 0 if norm is strictly smaller than B and 1 otherwise. **************************************************/ int PQCLEAN_DILITHIUM4_AVX2_poly_chknorm(const poly *a, uint32_t B) { int32_t t; /* It is ok to leak which coefficient violates the bound since the probability for each coefficient is independent of secret data but we must not leak the sign of the centralized representative. */ for (size_t i = 0; i < N; ++i) { /* Absolute value of centralized representative */ t = (Q - 1) / 2 - a->coeffs[i]; t ^= (t >> 31); t = (Q - 1) / 2 - t; if ((uint32_t)t >= B) { return 1; } } return 0; } /************************************************* * Name: rej_uniform_ref * * Description: Sample uniformly random coefficients in [0, Q-1] by * performing rejection sampling using array of random bytes. * * Arguments: - uint32_t *a: pointer to output array (allocated) * - size_t len: number of coefficients to be sampled * - const uint8_t *buf: array of random bytes * - size_t buflen: length of array of random bytes * * Returns number of sampled coefficients. Can be smaller than len if not enough * random bytes were given. **************************************************/ static size_t rej_uniform_ref( uint32_t *a, size_t len, const uint8_t *buf, size_t buflen) { size_t ctr, pos; uint32_t t; ctr = pos = 0; while (ctr < len && pos + 3 <= buflen) { t = buf[pos++]; t |= (uint32_t)buf[pos++] << 8; t |= (uint32_t)buf[pos++] << 16; t &= 0x7FFFFF; if (t < Q) { a[ctr++] = t; } } return ctr; } /************************************************* * Name: poly_uniform * * Description: Sample polynomial with uniformly random coefficients * in [0,Q-1] by performing rejection sampling using the * output stream from SHAKE256(seed|nonce). * * Arguments: - poly *a: pointer to output polynomial * - const uint8_t seed[]: byte array with seed of length * SEEDBYTES * - uint16_t nonce: 2-byte nonce **************************************************/ #define POLY_UNIFORM_NBLOCKS ((769 + STREAM128_BLOCKBYTES) / STREAM128_BLOCKBYTES) #define POLY_UNIFORM_BUFLEN (POLY_UNIFORM_NBLOCKS * STREAM128_BLOCKBYTES) void PQCLEAN_DILITHIUM4_AVX2_poly_uniform(poly *a, const uint8_t seed[SEEDBYTES], uint16_t nonce) { size_t ctr, off; size_t nblocks = POLY_UNIFORM_NBLOCKS; size_t buflen = POLY_UNIFORM_BUFLEN; uint8_t buf[POLY_UNIFORM_BUFLEN + 2]; stream128_state state; stream128_init(&state, seed, nonce); stream128_squeezeblocks(buf, nblocks, &state); ctr = PQCLEAN_DILITHIUM4_AVX2_rej_uniform(a->coeffs, N, buf, buflen); while (ctr < N) { off = buflen % 3; for (size_t i = 0; i < off; ++i) { buf[i] = buf[buflen - off + i]; } buflen = STREAM128_BLOCKBYTES + off; stream128_squeezeblocks(buf + off, 1, &state); ctr += rej_uniform_ref(a->coeffs + ctr, N - ctr, buf, buflen); } } void PQCLEAN_DILITHIUM4_AVX2_poly_uniform_4x(poly *a0, poly *a1, poly *a2, poly *a3, const uint8_t seed[SEEDBYTES], uint16_t nonce0, uint16_t nonce1, uint16_t nonce2, uint16_t nonce3) { size_t ctr0, ctr1, ctr2, ctr3; uint8_t inbuf[4][SEEDBYTES + 2]; uint8_t outbuf[4][5 * SHAKE128_RATE]; __m256i state[25]; for (size_t i = 0; i < SEEDBYTES; ++i) { inbuf[0][i] = seed[i]; inbuf[1][i] = seed[i]; inbuf[2][i] = seed[i]; inbuf[3][i] = seed[i]; } inbuf[0][SEEDBYTES + 0] = nonce0; inbuf[0][SEEDBYTES + 1] = nonce0 >> 8; inbuf[1][SEEDBYTES + 0] = nonce1; inbuf[1][SEEDBYTES + 1] = nonce1 >> 8; inbuf[2][SEEDBYTES + 0] = nonce2; inbuf[2][SEEDBYTES + 1] = nonce2 >> 8; inbuf[3][SEEDBYTES + 0] = nonce3; inbuf[3][SEEDBYTES + 1] = nonce3 >> 8; PQCLEAN_DILITHIUM4_AVX2_shake128_absorb4x(state, inbuf[0], inbuf[1], inbuf[2], inbuf[3], SEEDBYTES + 2); PQCLEAN_DILITHIUM4_AVX2_shake128_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 5, state); ctr0 = PQCLEAN_DILITHIUM4_AVX2_rej_uniform(a0->coeffs, N, outbuf[0], 5 * SHAKE128_RATE); ctr1 = PQCLEAN_DILITHIUM4_AVX2_rej_uniform(a1->coeffs, N, outbuf[1], 5 * SHAKE128_RATE); ctr2 = PQCLEAN_DILITHIUM4_AVX2_rej_uniform(a2->coeffs, N, outbuf[2], 5 * SHAKE128_RATE); ctr3 = PQCLEAN_DILITHIUM4_AVX2_rej_uniform(a3->coeffs, N, outbuf[3], 5 * SHAKE128_RATE); while (ctr0 < N || ctr1 < N || ctr2 < N || ctr3 < N) { PQCLEAN_DILITHIUM4_AVX2_shake128_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 1, state); ctr0 += rej_uniform_ref(a0->coeffs + ctr0, N - ctr0, outbuf[0], SHAKE128_RATE); ctr1 += rej_uniform_ref(a1->coeffs + ctr1, N - ctr1, outbuf[1], SHAKE128_RATE); ctr2 += rej_uniform_ref(a2->coeffs + ctr2, N - ctr2, outbuf[2], SHAKE128_RATE); ctr3 += rej_uniform_ref(a3->coeffs + ctr3, N - ctr3, outbuf[3], SHAKE128_RATE); } } /************************************************* * Name: rej_eta * * Description: Sample uniformly random coefficients in [-ETA, ETA] by * performing rejection sampling using array of random bytes. * * Arguments: - uint32_t *a: pointer to output array (allocated) * - size_t len: number of coefficients to be sampled * - const uint8_t *buf: array of random bytes * - size_t buflen: length of array of random bytes * * Returns number of sampled coefficients. Can be smaller than len if not enough * random bytes were given. **************************************************/ static size_t rej_eta_ref( uint32_t *a, size_t len, const uint8_t *buf, size_t buflen) { size_t ctr, pos; uint32_t t0, t1; ctr = pos = 0; while (ctr < len && pos < buflen) { t0 = buf[pos] & 0x07; t1 = buf[pos++] >> 5; if (t0 <= 2 * ETA) { a[ctr++] = Q + ETA - t0; } if (t1 <= 2 * ETA && ctr < len) { a[ctr++] = Q + ETA - t1; } } return ctr; } /************************************************* * Name: poly_uniform_eta * * Description: Sample polynomial with uniformly random coefficients * in [-ETA,ETA] by performing rejection sampling using the * output stream from SHAKE256(seed|nonce). * * Arguments: - poly *a: pointer to output polynomial * - const uint8_t seed[]: byte array with seed of length * SEEDBYTES * - uint16_t nonce: 2-byte nonce **************************************************/ #define POLY_UNIFORM_ETA_NBLOCKS (((N / 2 * (1u << SETABITS)) / (2 * ETA + 1) + STREAM128_BLOCKBYTES) / STREAM128_BLOCKBYTES) #define POLY_UNIFORM_ETA_BUFLEN (POLY_UNIFORM_ETA_NBLOCKS*STREAM128_BLOCKBYTES) void PQCLEAN_DILITHIUM4_AVX2_poly_uniform_eta( poly *a, const uint8_t seed[SEEDBYTES], uint16_t nonce) { size_t ctr; uint8_t buf[POLY_UNIFORM_ETA_BUFLEN]; stream128_state state; stream128_init(&state, seed, nonce); stream128_squeezeblocks(buf, POLY_UNIFORM_ETA_NBLOCKS, &state); ctr = PQCLEAN_DILITHIUM4_AVX2_rej_eta(a->coeffs, N, buf, POLY_UNIFORM_ETA_BUFLEN); while (ctr < N) { stream128_squeezeblocks(buf, 1, &state); ctr += rej_eta_ref(a->coeffs + ctr, N - ctr, buf, STREAM128_BLOCKBYTES); } } void PQCLEAN_DILITHIUM4_AVX2_poly_uniform_eta_4x( poly *a0, poly *a1, poly *a2, poly *a3, const uint8_t seed[SEEDBYTES], uint16_t nonce0, uint16_t nonce1, uint16_t nonce2, uint16_t nonce3) { size_t ctr0, ctr1, ctr2, ctr3; uint8_t inbuf[4][SEEDBYTES + 2]; uint8_t outbuf[4][2 * SHAKE128_RATE]; __m256i state[25]; for (size_t i = 0; i < SEEDBYTES; ++i) { inbuf[0][i] = seed[i]; inbuf[1][i] = seed[i]; inbuf[2][i] = seed[i]; inbuf[3][i] = seed[i]; } inbuf[0][SEEDBYTES + 0] = nonce0; inbuf[0][SEEDBYTES + 1] = nonce0 >> 8; inbuf[1][SEEDBYTES + 0] = nonce1; inbuf[1][SEEDBYTES + 1] = nonce1 >> 8; inbuf[2][SEEDBYTES + 0] = nonce2; inbuf[2][SEEDBYTES + 1] = nonce2 >> 8; inbuf[3][SEEDBYTES + 0] = nonce3; inbuf[3][SEEDBYTES + 1] = nonce3 >> 8; PQCLEAN_DILITHIUM4_AVX2_shake128_absorb4x(state, inbuf[0], inbuf[1], inbuf[2], inbuf[3], SEEDBYTES + 2); PQCLEAN_DILITHIUM4_AVX2_shake128_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 2, state); ctr0 = PQCLEAN_DILITHIUM4_AVX2_rej_eta(a0->coeffs, N, outbuf[0], 2 * SHAKE128_RATE); ctr1 = PQCLEAN_DILITHIUM4_AVX2_rej_eta(a1->coeffs, N, outbuf[1], 2 * SHAKE128_RATE); ctr2 = PQCLEAN_DILITHIUM4_AVX2_rej_eta(a2->coeffs, N, outbuf[2], 2 * SHAKE128_RATE); ctr3 = PQCLEAN_DILITHIUM4_AVX2_rej_eta(a3->coeffs, N, outbuf[3], 2 * SHAKE128_RATE); while (ctr0 < N || ctr1 < N || ctr2 < N || ctr3 < N) { PQCLEAN_DILITHIUM4_AVX2_shake128_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 1, state); ctr0 += rej_eta_ref(a0->coeffs + ctr0, N - ctr0, outbuf[0], SHAKE128_RATE); ctr1 += rej_eta_ref(a1->coeffs + ctr1, N - ctr1, outbuf[1], SHAKE128_RATE); ctr2 += rej_eta_ref(a2->coeffs + ctr2, N - ctr2, outbuf[2], SHAKE128_RATE); ctr3 += rej_eta_ref(a3->coeffs + ctr3, N - ctr3, outbuf[3], SHAKE128_RATE); } } /************************************************* * Name: rej_gamma1m1_ref * * Description: Sample uniformly random coefficients * in [-(GAMMA1 - 1), GAMMA1 - 1] by performing rejection sampling * using array of random bytes. * * Arguments: - uint32_t *a: pointer to output array (allocated) * - size_t len: number of coefficients to be sampled * - const uint8_t *buf: array of random bytes * - size_t buflen: length of array of random bytes * * Returns number of sampled coefficients. Can be smaller than len if not enough * random bytes were given. **************************************************/ static size_t rej_gamma1m1_ref( uint32_t *a, size_t len, const uint8_t *buf, size_t buflen) { size_t ctr, pos; uint32_t t0, t1; ctr = pos = 0; while (ctr < len && pos + 5 <= buflen) { t0 = buf[pos]; t0 |= (uint32_t)buf[pos + 1] << 8; t0 |= (uint32_t)buf[pos + 2] << 16; t0 &= 0xFFFFF; t1 = buf[pos + 2] >> 4; t1 |= (uint32_t)buf[pos + 3] << 4; t1 |= (uint32_t)buf[pos + 4] << 12; pos += 5; if (t0 <= 2 * GAMMA1 - 2) { a[ctr++] = Q + GAMMA1 - 1 - t0; } if (t1 <= 2 * GAMMA1 - 2 && ctr < len) { a[ctr++] = Q + GAMMA1 - 1 - t1; } } return ctr; } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_poly_uniform_gamma1m1 * * Description: Sample polynomial with uniformly random coefficients * in [-(GAMMA1 - 1), GAMMA1 - 1] by performing rejection * sampling on output stream of SHAKE256(seed|nonce). * * Arguments: - poly *a: pointer to output polynomial * - const uint8_t seed[]: byte array with seed of length * CRHBYTES * - uint16_t nonce: 16-bit nonce **************************************************/ #define POLY_UNIFORM_GAMMA1M1_NBLOCKS ((641 + STREAM256_BLOCKBYTES) / STREAM256_BLOCKBYTES) #define POLY_UNIFORM_GAMMA1M1_BUFLEN (POLY_UNIFORM_GAMMA1M1_NBLOCKS * STREAM256_BLOCKBYTES) void PQCLEAN_DILITHIUM4_AVX2_poly_uniform_gamma1m1( poly *a, const uint8_t seed[CRHBYTES], uint16_t nonce) { size_t ctr, off; size_t buflen = POLY_UNIFORM_GAMMA1M1_BUFLEN; uint8_t buf[POLY_UNIFORM_GAMMA1M1_BUFLEN + 4]; stream256_state state; stream256_init(&state, seed, nonce); stream256_squeezeblocks(buf, POLY_UNIFORM_GAMMA1M1_NBLOCKS, &state); ctr = PQCLEAN_DILITHIUM4_AVX2_rej_gamma1m1(a->coeffs, N, buf, POLY_UNIFORM_GAMMA1M1_BUFLEN); while (ctr < N) { off = buflen % 5; for (size_t i = 0; i < off; ++i) { buf[i] = buf[buflen - off + i]; } buflen = STREAM256_BLOCKBYTES + off; stream256_squeezeblocks(buf + off, 1, &state); ctr += rej_gamma1m1_ref(a->coeffs + ctr, N - ctr, buf, buflen); } } void PQCLEAN_DILITHIUM4_AVX2_poly_uniform_gamma1m1_4x(poly *a0, poly *a1, poly *a2, poly *a3, const uint8_t seed[CRHBYTES], uint16_t nonce0, uint16_t nonce1, uint16_t nonce2, uint16_t nonce3) { size_t ctr0, ctr1, ctr2, ctr3; uint8_t inbuf[4][CRHBYTES + 2]; uint8_t outbuf[4][5 * SHAKE256_RATE]; __m256i state[25]; for (size_t i = 0; i < CRHBYTES; ++i) { inbuf[0][i] = seed[i]; inbuf[1][i] = seed[i]; inbuf[2][i] = seed[i]; inbuf[3][i] = seed[i]; } inbuf[0][CRHBYTES + 0] = nonce0 & 0xFF; inbuf[0][CRHBYTES + 1] = nonce0 >> 8; inbuf[1][CRHBYTES + 0] = nonce1 & 0xFF; inbuf[1][CRHBYTES + 1] = nonce1 >> 8; inbuf[2][CRHBYTES + 0] = nonce2 & 0xFF; inbuf[2][CRHBYTES + 1] = nonce2 >> 8; inbuf[3][CRHBYTES + 0] = nonce3 & 0xFF; inbuf[3][CRHBYTES + 1] = nonce3 >> 8; PQCLEAN_DILITHIUM4_AVX2_shake256_absorb4x(state, inbuf[0], inbuf[1], inbuf[2], inbuf[3], CRHBYTES + 2); PQCLEAN_DILITHIUM4_AVX2_shake256_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 5, state); ctr0 = rej_gamma1m1_ref(a0->coeffs, N, outbuf[0], 5 * SHAKE256_RATE); ctr1 = rej_gamma1m1_ref(a1->coeffs, N, outbuf[1], 5 * SHAKE256_RATE); ctr2 = rej_gamma1m1_ref(a2->coeffs, N, outbuf[2], 5 * SHAKE256_RATE); ctr3 = rej_gamma1m1_ref(a3->coeffs, N, outbuf[3], 5 * SHAKE256_RATE); while (ctr0 < N || ctr1 < N || ctr2 < N || ctr3 < N) { PQCLEAN_DILITHIUM4_AVX2_shake256_squeezeblocks4x(outbuf[0], outbuf[1], outbuf[2], outbuf[3], 1, state); ctr0 += rej_gamma1m1_ref(a0->coeffs + ctr0, N - ctr0, outbuf[0], SHAKE256_RATE); ctr1 += rej_gamma1m1_ref(a1->coeffs + ctr1, N - ctr1, outbuf[1], SHAKE256_RATE); ctr2 += rej_gamma1m1_ref(a2->coeffs + ctr2, N - ctr2, outbuf[2], SHAKE256_RATE); ctr3 += rej_gamma1m1_ref(a3->coeffs + ctr3, N - ctr3, outbuf[3], SHAKE256_RATE); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyeta_pack * * Description: Bit-pack polynomial with coefficients in [-ETA,ETA]. * Input coefficients are assumed to lie in [Q-ETA,Q+ETA]. * * Arguments: - uint8_t *r: pointer to output byte array with at least * POLETA_SIZE_PACKED bytes * - const poly *a: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyeta_pack(uint8_t *restrict r, const poly *restrict a) { uint8_t t[8]; for (size_t i = 0; i < N / 8; ++i) { t[0] = Q + ETA - a->coeffs[8 * i + 0]; t[1] = Q + ETA - a->coeffs[8 * i + 1]; t[2] = Q + ETA - a->coeffs[8 * i + 2]; t[3] = Q + ETA - a->coeffs[8 * i + 3]; t[4] = Q + ETA - a->coeffs[8 * i + 4]; t[5] = Q + ETA - a->coeffs[8 * i + 5]; t[6] = Q + ETA - a->coeffs[8 * i + 6]; t[7] = Q + ETA - a->coeffs[8 * i + 7]; r[3 * i + 0] = (t[0] >> 0) | (t[1] << 3) | (t[2] << 6); r[3 * i + 1] = (t[2] >> 2) | (t[3] << 1) | (t[4] << 4) | (t[5] << 7); r[3 * i + 2] = (t[5] >> 1) | (t[6] << 2) | (t[7] << 5); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyeta_unpack * * Description: Unpack polynomial with coefficients in [-ETA,ETA]. * Output coefficients lie in [Q-ETA,Q+ETA]. * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: byte array with bit-packed polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyeta_unpack(poly *restrict r, const uint8_t *restrict a) { for (size_t i = 0; i < N / 8; ++i) { r->coeffs[8 * i + 0] = a[3 * i + 0] & 0x07; r->coeffs[8 * i + 1] = (a[3 * i + 0] >> 3) & 0x07; r->coeffs[8 * i + 2] = (uint32_t)((a[3 * i + 0] >> 6) | (a[3 * i + 1] << 2)) & 0x07; r->coeffs[8 * i + 3] = (a[3 * i + 1] >> 1) & 0x07; r->coeffs[8 * i + 4] = (a[3 * i + 1] >> 4) & 0x07; r->coeffs[8 * i + 5] = (uint32_t)((a[3 * i + 1] >> 7) | (a[3 * i + 2] << 1)) & 0x07; r->coeffs[8 * i + 6] = (a[3 * i + 2] >> 2) & 0x07; r->coeffs[8 * i + 7] = (a[3 * i + 2] >> 5) & 0x07; r->coeffs[8 * i + 0] = Q + ETA - r->coeffs[8 * i + 0]; r->coeffs[8 * i + 1] = Q + ETA - r->coeffs[8 * i + 1]; r->coeffs[8 * i + 2] = Q + ETA - r->coeffs[8 * i + 2]; r->coeffs[8 * i + 3] = Q + ETA - r->coeffs[8 * i + 3]; r->coeffs[8 * i + 4] = Q + ETA - r->coeffs[8 * i + 4]; r->coeffs[8 * i + 5] = Q + ETA - r->coeffs[8 * i + 5]; r->coeffs[8 * i + 6] = Q + ETA - r->coeffs[8 * i + 6]; r->coeffs[8 * i + 7] = Q + ETA - r->coeffs[8 * i + 7]; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyt1_pack * * Description: Bit-pack polynomial t1 with coefficients fitting in 9 bits. * Input coefficients are assumed to be standard representatives. * * Arguments: - uint8_t *r: pointer to output byte array with at least * POLT1_SIZE_PACKED bytes * - const poly *a: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyt1_pack(uint8_t *restrict r, const poly *restrict a) { for (size_t i = 0; i < N / 8; ++i) { r[9 * i + 0] = (uint8_t)((a->coeffs[8 * i + 0] >> 0)); r[9 * i + 1] = (uint8_t)((a->coeffs[8 * i + 0] >> 8) | (a->coeffs[8 * i + 1] << 1)); r[9 * i + 2] = (uint8_t)((a->coeffs[8 * i + 1] >> 7) | (a->coeffs[8 * i + 2] << 2)); r[9 * i + 3] = (uint8_t)((a->coeffs[8 * i + 2] >> 6) | (a->coeffs[8 * i + 3] << 3)); r[9 * i + 4] = (uint8_t)((a->coeffs[8 * i + 3] >> 5) | (a->coeffs[8 * i + 4] << 4)); r[9 * i + 5] = (uint8_t)((a->coeffs[8 * i + 4] >> 4) | (a->coeffs[8 * i + 5] << 5)); r[9 * i + 6] = (uint8_t)((a->coeffs[8 * i + 5] >> 3) | (a->coeffs[8 * i + 6] << 6)); r[9 * i + 7] = (uint8_t)((a->coeffs[8 * i + 6] >> 2) | (a->coeffs[8 * i + 7] << 7)); r[9 * i + 8] = (uint8_t)((a->coeffs[8 * i + 7] >> 1)); } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyt1_unpack * * Description: Unpack polynomial t1 with 9-bit coefficients. * Output coefficients are standard representatives. * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: byte array with bit-packed polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyt1_unpack(poly *restrict r, const uint8_t *restrict a) { for (size_t i = 0; i < N / 8; ++i) { r->coeffs[8 * i + 0] = ((a[9 * i + 0] >> 0) | ((uint32_t)a[9 * i + 1] << 8)) & 0x1FF; r->coeffs[8 * i + 1] = ((a[9 * i + 1] >> 1) | ((uint32_t)a[9 * i + 2] << 7)) & 0x1FF; r->coeffs[8 * i + 2] = ((a[9 * i + 2] >> 2) | ((uint32_t)a[9 * i + 3] << 6)) & 0x1FF; r->coeffs[8 * i + 3] = ((a[9 * i + 3] >> 3) | ((uint32_t)a[9 * i + 4] << 5)) & 0x1FF; r->coeffs[8 * i + 4] = ((a[9 * i + 4] >> 4) | ((uint32_t)a[9 * i + 5] << 4)) & 0x1FF; r->coeffs[8 * i + 5] = ((a[9 * i + 5] >> 5) | ((uint32_t)a[9 * i + 6] << 3)) & 0x1FF; r->coeffs[8 * i + 6] = ((a[9 * i + 6] >> 6) | ((uint32_t)a[9 * i + 7] << 2)) & 0x1FF; r->coeffs[8 * i + 7] = ((a[9 * i + 7] >> 7) | ((uint32_t)a[9 * i + 8] << 1)) & 0x1FF; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyt0_pack * * Description: Bit-pack polynomial t0 with coefficients in ]-2^{D-1}, 2^{D-1}]. * Input coefficients are assumed to lie in ]Q-2^{D-1}, Q+2^{D-1}]. * * Arguments: - uint8_t *r: pointer to output byte array with at least * POLT0_SIZE_PACKED bytes * - const poly *a: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyt0_pack(uint8_t *restrict r, const poly *restrict a) { uint32_t t[4]; for (size_t i = 0; i < N / 4; ++i) { t[0] = Q + (1U << (D - 1)) - a->coeffs[4 * i + 0]; t[1] = Q + (1U << (D - 1)) - a->coeffs[4 * i + 1]; t[2] = Q + (1U << (D - 1)) - a->coeffs[4 * i + 2]; t[3] = Q + (1U << (D - 1)) - a->coeffs[4 * i + 3]; r[7 * i + 0] = t[0]; r[7 * i + 1] = t[0] >> 8; r[7 * i + 1] |= t[1] << 6; r[7 * i + 2] = t[1] >> 2; r[7 * i + 3] = t[1] >> 10; r[7 * i + 3] |= t[2] << 4; r[7 * i + 4] = t[2] >> 4; r[7 * i + 5] = t[2] >> 12; r[7 * i + 5] |= t[3] << 2; r[7 * i + 6] = t[3] >> 6; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyt0_unpack * * Description: Unpack polynomial t0 with coefficients in ]-2^{D-1}, 2^{D-1}]. * Output coefficients lie in ]Q-2^{D-1},Q+2^{D-1}]. * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: byte array with bit-packed polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyt0_unpack(poly *restrict r, const uint8_t *restrict a) { for (size_t i = 0; i < N / 4; ++i) { r->coeffs[4 * i + 0] = a[7 * i + 0]; r->coeffs[4 * i + 0] |= (uint32_t)(a[7 * i + 1] & 0x3F) << 8; r->coeffs[4 * i + 1] = a[7 * i + 1] >> 6; r->coeffs[4 * i + 1] |= (uint32_t)a[7 * i + 2] << 2; r->coeffs[4 * i + 1] |= (uint32_t)(a[7 * i + 3] & 0x0F) << 10; r->coeffs[4 * i + 2] = a[7 * i + 3] >> 4; r->coeffs[4 * i + 2] |= (uint32_t)a[7 * i + 4] << 4; r->coeffs[4 * i + 2] |= (uint32_t)(a[7 * i + 5] & 0x03) << 12; r->coeffs[4 * i + 3] = a[7 * i + 5] >> 2; r->coeffs[4 * i + 3] |= (uint32_t)a[7 * i + 6] << 6; r->coeffs[4 * i + 0] = Q + (1U << (D - 1)) - r->coeffs[4 * i + 0]; r->coeffs[4 * i + 1] = Q + (1U << (D - 1)) - r->coeffs[4 * i + 1]; r->coeffs[4 * i + 2] = Q + (1U << (D - 1)) - r->coeffs[4 * i + 2]; r->coeffs[4 * i + 3] = Q + (1U << (D - 1)) - r->coeffs[4 * i + 3]; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyz_pack * * Description: Bit-pack polynomial z with coefficients * in [-(GAMMA1 - 1), GAMMA1 - 1]. * Input coefficients are assumed to be standard representatives. * * Arguments: - uint8_t *r: pointer to output byte array with at least * POLZ_SIZE_PACKED bytes * - const poly *a: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyz_pack(uint8_t *restrict r, const poly *restrict a) { uint32_t t[2]; for (size_t i = 0; i < N / 2; ++i) { /* Map to {0,...,2*GAMMA1 - 2} */ t[0] = GAMMA1 - 1 - a->coeffs[2 * i + 0]; t[0] += ((int32_t)t[0] >> 31) & Q; t[1] = GAMMA1 - 1 - a->coeffs[2 * i + 1]; t[1] += ((int32_t)t[1] >> 31) & Q; r[5 * i + 0] = t[0]; r[5 * i + 1] = t[0] >> 8; r[5 * i + 2] = t[0] >> 16; r[5 * i + 2] |= t[1] << 4; r[5 * i + 3] = t[1] >> 4; r[5 * i + 4] = t[1] >> 12; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyz_unpack * * Description: Unpack polynomial z with coefficients * in [-(GAMMA1 - 1), GAMMA1 - 1]. * Output coefficients are standard representatives. * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: byte array with bit-packed polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyz_unpack(poly *restrict r, const uint8_t *restrict a) { for (size_t i = 0; i < N / 2; ++i) { r->coeffs[2 * i + 0] = a[5 * i + 0]; r->coeffs[2 * i + 0] |= (uint32_t)a[5 * i + 1] << 8; r->coeffs[2 * i + 0] |= (uint32_t)(a[5 * i + 2] & 0x0F) << 16; r->coeffs[2 * i + 1] = a[5 * i + 2] >> 4; r->coeffs[2 * i + 1] |= (uint32_t)a[5 * i + 3] << 4; r->coeffs[2 * i + 1] |= (uint32_t)a[5 * i + 4] << 12; r->coeffs[2 * i + 0] = GAMMA1 - 1 - r->coeffs[2 * i + 0]; r->coeffs[2 * i + 0] += ((int32_t)r->coeffs[2 * i + 0] >> 31) & Q; r->coeffs[2 * i + 1] = GAMMA1 - 1 - r->coeffs[2 * i + 1]; r->coeffs[2 * i + 1] += ((int32_t)r->coeffs[2 * i + 1] >> 31) & Q; } } /************************************************* * Name: PQCLEAN_DILITHIUM4_AVX2_polyw1_pack * * Description: Bit-pack polynomial w1 with coefficients in [0, 15]. * Input coefficients are assumed to be standard representatives. * * Arguments: - uint8_t *r: pointer to output byte array with at least * POLW1_SIZE_PACKED bytes * - const poly *a: pointer to input polynomial **************************************************/ void PQCLEAN_DILITHIUM4_AVX2_polyw1_pack( uint8_t *restrict r, const poly *restrict a) { for (size_t i = 0; i < N / 2; ++i) { r[i] = a->coeffs[2 * i + 0] | (a->coeffs[2 * i + 1] << 4); } }