#include #include #include "address.h" #include "hash.h" #include "params.h" #include "utils.h" #include "sha2.h" #include "sha256.h" /* For SHA256, there is no immediate reason to initialize at the start, so this function is an empty operation. */ void PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_initialize_hash_function( hash_state *hash_state_seeded, const unsigned char *pub_seed, const unsigned char *sk_seed) { PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_seed_state(hash_state_seeded, pub_seed); (void)sk_seed; /* Suppress an 'unused parameter' warning. */ } /* * Computes PRF(key, addr), given a secret key of SPX_N bytes and an address */ void PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_prf_addr( unsigned char *out, const unsigned char *key, const uint32_t addr[8], const hash_state *hash_state_seeded) { unsigned char buf[SPX_N + SPX_SHA256_ADDR_BYTES]; unsigned char outbuf[SPX_SHA256_OUTPUT_BYTES]; memcpy(buf, key, SPX_N); PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_compress_address(buf + SPX_N, addr); sha256(outbuf, buf, SPX_N + SPX_SHA256_ADDR_BYTES); memcpy(out, outbuf, SPX_N); (void)hash_state_seeded; /* Prevent unused parameter warning. */ } /** * Computes the message-dependent randomness R, using a secret seed as a key * for HMAC, and an optional randomization value prefixed to the message. * This requires m to have at least SPX_SHA256_BLOCK_BYTES + SPX_N space * available in front of the pointer, i.e. before the message to use for the * prefix. This is necessary to prevent having to move the message around (and * allocate memory for it). */ void PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_gen_message_random( unsigned char *R, const unsigned char *sk_prf, const unsigned char *optrand, const unsigned char *m, size_t mlen, const hash_state *hash_state_seeded) { unsigned char buf[SPX_SHA256_BLOCK_BYTES + SPX_SHA256_OUTPUT_BYTES]; sha256ctx state; int i; /* This implements HMAC-SHA256 */ for (i = 0; i < SPX_N; i++) { buf[i] = 0x36 ^ sk_prf[i]; } memset(buf + SPX_N, 0x36, SPX_SHA256_BLOCK_BYTES - SPX_N); sha256_inc_init(&state); sha256_inc_blocks(&state, buf, 1); memcpy(buf, optrand, SPX_N); /* If optrand + message cannot fill up an entire block */ if (SPX_N + mlen < SPX_SHA256_BLOCK_BYTES) { memcpy(buf + SPX_N, m, mlen); sha256_inc_finalize(buf + SPX_SHA256_BLOCK_BYTES, &state, buf, mlen + SPX_N); } /* Otherwise first fill a block, so that finalize only uses the message */ else { memcpy(buf + SPX_N, m, SPX_SHA256_BLOCK_BYTES - SPX_N); sha256_inc_blocks(&state, buf, 1); m += SPX_SHA256_BLOCK_BYTES - SPX_N; mlen -= SPX_SHA256_BLOCK_BYTES - SPX_N; sha256_inc_finalize(buf + SPX_SHA256_BLOCK_BYTES, &state, m, mlen); } for (i = 0; i < SPX_N; i++) { buf[i] = 0x5c ^ sk_prf[i]; } memset(buf + SPX_N, 0x5c, SPX_SHA256_BLOCK_BYTES - SPX_N); sha256(buf, buf, SPX_SHA256_BLOCK_BYTES + SPX_SHA256_OUTPUT_BYTES); memcpy(R, buf, SPX_N); (void)hash_state_seeded; /* Prevent unused parameter warning. */ } /** * Computes the message hash using R, the public key, and the message. * Outputs the message digest and the index of the leaf. The index is split in * the tree index and the leaf index, for convenient copying to an address. */ void PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_hash_message( unsigned char *digest, uint64_t *tree, uint32_t *leaf_idx, const unsigned char *R, const unsigned char *pk, const unsigned char *m, size_t mlen, const hash_state *hash_state_seeded) { #define SPX_TREE_BITS (SPX_TREE_HEIGHT * (SPX_D - 1)) #define SPX_TREE_BYTES ((SPX_TREE_BITS + 7) / 8) #define SPX_LEAF_BITS SPX_TREE_HEIGHT #define SPX_LEAF_BYTES ((SPX_LEAF_BITS + 7) / 8) #define SPX_DGST_BYTES (SPX_FORS_MSG_BYTES + SPX_TREE_BYTES + SPX_LEAF_BYTES) unsigned char seed[SPX_SHA256_OUTPUT_BYTES + 4]; /* Round to nearest multiple of SPX_SHA256_BLOCK_BYTES */ #define SPX_INBLOCKS (((SPX_N + SPX_PK_BYTES + SPX_SHA256_BLOCK_BYTES - 1) & \ -SPX_SHA256_BLOCK_BYTES) / SPX_SHA256_BLOCK_BYTES) unsigned char inbuf[SPX_INBLOCKS * SPX_SHA256_BLOCK_BYTES]; unsigned char buf[SPX_DGST_BYTES]; unsigned char *bufp = buf; sha256ctx state; sha256_inc_init(&state); memcpy(inbuf, R, SPX_N); memcpy(inbuf + SPX_N, pk, SPX_PK_BYTES); /* If R + pk + message cannot fill up an entire block */ if (SPX_N + SPX_PK_BYTES + mlen < SPX_INBLOCKS * SPX_SHA256_BLOCK_BYTES) { memcpy(inbuf + SPX_N + SPX_PK_BYTES, m, mlen); sha256_inc_finalize(seed, &state, inbuf, SPX_N + SPX_PK_BYTES + mlen); } /* Otherwise first fill a block, so that finalize only uses the message */ else { memcpy(inbuf + SPX_N + SPX_PK_BYTES, m, SPX_INBLOCKS * SPX_SHA256_BLOCK_BYTES - SPX_N - SPX_PK_BYTES); sha256_inc_blocks(&state, inbuf, SPX_INBLOCKS); m += SPX_INBLOCKS * SPX_SHA256_BLOCK_BYTES - SPX_N - SPX_PK_BYTES; mlen -= SPX_INBLOCKS * SPX_SHA256_BLOCK_BYTES - SPX_N - SPX_PK_BYTES; sha256_inc_finalize(seed, &state, m, mlen); } /* By doing this in two steps, we prevent hashing the message twice; otherwise each iteration in MGF1 would hash the message again. */ PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_mgf1(bufp, SPX_DGST_BYTES, seed, SPX_SHA256_OUTPUT_BYTES); memcpy(digest, bufp, SPX_FORS_MSG_BYTES); bufp += SPX_FORS_MSG_BYTES; *tree = PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_bytes_to_ull(bufp, SPX_TREE_BYTES); *tree &= (~(uint64_t)0) >> (64 - SPX_TREE_BITS); bufp += SPX_TREE_BYTES; *leaf_idx = (uint32_t)PQCLEAN_SPHINCSSHA256192FSIMPLE_CLEAN_bytes_to_ull( bufp, SPX_LEAF_BYTES); *leaf_idx &= (~(uint32_t)0) >> (32 - SPX_LEAF_BITS); (void)hash_state_seeded; /* Prevent unused parameter warning. */ }