#include #include #include #include #include "api.h" #include "randombytes.h" #define NTESTS 15 #define MLEN 32 const uint8_t canary[8] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF }; /* allocate a bit more for all keys and messages and * make sure it is not touched by the implementations. */ static void write_canary(uint8_t *d) { for (int i = 0; i < 8; i++) { d[i] = canary[i]; } } static int check_canary(const uint8_t *d) { for (int i = 0; i < 8; i++) { if (d[i] != canary[i]) { return -1; } } return 0; } // https://stackoverflow.com/a/1489985/1711232 #define PASTER(x, y) x##_##y #define EVALUATOR(x, y) PASTER(x, y) #define NAMESPACE(fun) EVALUATOR(PQCLEAN_NAMESPACE, fun) #define crypto_sign_keypair NAMESPACE(crypto_sign_keypair) #define crypto_sign NAMESPACE(crypto_sign) #define crypto_sign_open NAMESPACE(crypto_sign_open) #define RETURNS_ZERO(f) \ if ((f) != 0) { \ puts("(f) returned non-zero returncode"); \ return -1; \ } static int test_sign(void) { /* * This is most likely going to be aligned by the compiler. * 16 extra bytes for canary * 1 extra byte for unalignment */ uint8_t pk_aligned[CRYPTO_PUBLICKEYBYTES + 16 + 1]; uint8_t sk_aligned[CRYPTO_SECRETKEYBYTES + 16 + 1]; uint8_t sm_aligned[MLEN + CRYPTO_BYTES + 16 + 1]; uint8_t m_aligned[MLEN + 16 + 1]; /* * Make sure all pointers are odd. * This ensures that the implementation does not assume anything about the * data alignment. For example this would catch if an implementation * directly uses these pointers to load into vector registers using movdqa. */ uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned|(uintptr_t) 1); uint8_t *sk = (uint8_t *) ((uintptr_t) sk_aligned|(uintptr_t) 1); uint8_t *sm = (uint8_t *) ((uintptr_t) sm_aligned|(uintptr_t) 1); uint8_t *m = (uint8_t *) ((uintptr_t) m_aligned|(uintptr_t) 1); size_t mlen; size_t smlen; int returncode; int i; /* * Write 8 byte canary before and after the actual memory regions. * This is used to validate that the implementation does not assume * anything about the placement of data in memory * (e.g., assuming that the pk is always behind the sk) */ write_canary(pk); write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8); write_canary(sk); write_canary(sk + CRYPTO_SECRETKEYBYTES + 8); write_canary(sm); write_canary(sm + MLEN + CRYPTO_BYTES + 8); write_canary(m); write_canary(m + MLEN + 8); for (i = 0; i < NTESTS; i++) { RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8)); randombytes(m + 8, MLEN); RETURNS_ZERO(crypto_sign(sm + 8, &smlen, m + 8, MLEN, sk + 8)); // By relying on m == sm we prevent having to allocate CRYPTO_BYTES // twice if ((returncode = crypto_sign_open(sm + 8, &mlen, sm + 8, smlen, pk + 8)) != 0) { printf("ERROR Signature did not verify correctly!\n"); if (returncode > 0) { puts("ERROR return code should be < 0 on failure"); } return 1; } // Validate that the implementation did not touch the canary if (check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8) || check_canary(sk) || check_canary(sk + CRYPTO_SECRETKEYBYTES + 8) || check_canary(sm) || check_canary(sm + MLEN + CRYPTO_BYTES + 8) || check_canary(m) || check_canary(m + MLEN + 8)) { printf("ERROR canary overwritten\n"); return 1; } } return 0; } static int test_wrong_pk(void) { uint8_t pk[CRYPTO_PUBLICKEYBYTES]; uint8_t pk2[CRYPTO_PUBLICKEYBYTES]; uint8_t sk[CRYPTO_SECRETKEYBYTES]; uint8_t sm[MLEN + CRYPTO_BYTES]; uint8_t m[MLEN]; size_t mlen; size_t smlen; int returncode; int i; for (i = 0; i < NTESTS; i++) { RETURNS_ZERO(crypto_sign_keypair(pk2, sk)); RETURNS_ZERO(crypto_sign_keypair(pk, sk)); randombytes(m, MLEN); RETURNS_ZERO(crypto_sign(sm, &smlen, m, MLEN, sk)); // By relying on m == sm we prevent having to allocate CRYPTO_BYTES // twice returncode = crypto_sign_open(sm, &mlen, sm, smlen, pk2); if (!returncode) { printf("ERROR Signature did verify correctly under wrong public key!\n"); if (returncode > 0) { puts("ERROR return code should be < 0"); } return 1; } } return 0; } int main(void) { int result = 0; result += test_sign(); result += test_wrong_pk(); return result; }