#include "gf2x_arith.h" #include // memset(...) void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { for (int i = 0; i < nr; i++) { Res[i] = A[i] ^ B[i]; } } /* copies len digits from a to r if b == 1 */ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_cmov(DIGIT *r, const DIGIT *a, size_t len, int c) { size_t i; DIGIT mask = -(DIGIT)c; for (i = 0; i < len; i++) { r[i] ^= mask & (a[i] ^ r[i]); } } /* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) { if ( amount == 0 ) { return; } unsigned int j; DIGIT mask; mask = ((DIGIT)0x01 << amount) - 1; for (j = length - 1; j > 0; j--) { in[j] >>= amount; in[j] |= (in[j - 1] & mask) << (DIGIT_SIZE_b - amount); } in[j] >>= amount; } /* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */ void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) { if ( amount == 0 ) { return; } int j; DIGIT mask; mask = ~(((DIGIT)0x01 << (DIGIT_SIZE_b - amount)) - 1); for (j = 0 ; j < length - 1; j++) { in[j] <<= amount; in[j] |= (in[j + 1] & mask) >> (DIGIT_SIZE_b - amount); } in[j] <<= amount; } static void gf2x_mul1(DIGIT *R, const DIGIT A, const DIGIT B) { DIGIT tmp; R[0] = 0; R[1] = (A & 1) * B; for (unsigned i = 1; i < DIGIT_SIZE_b; i++) { tmp = ((A >> i) & 1) * B; R[1] ^= tmp << i; R[0] ^= tmp >> (DIGIT_SIZE_b - i); } } static void gf2x_mul_n(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { DIGIT tmp[2]; memset(R, 0x00, 2 * n * sizeof(DIGIT)); for (size_t i = 0; i < n; i++) { for (size_t j = 0; j < n; j++) { gf2x_mul1(tmp, A[i], B[j]); R[i + j] ^= tmp[0]; R[i + j + 1] ^= tmp[1]; } } } static void gf2x_cpy(DIGIT *R, const DIGIT *A, size_t len) { for (size_t i = 0; i < len; i++) { R[i] = A[i]; } } /* Accumulate */ #define gf2x_add(R, A, B, n) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R, A, B, n) #define gf2x_acc(R, B, n) PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R, R, B, n) /* allows the operands to be of different size * first operand must be the bigger one. * aligns last array elements */ static inline void gf2x_add_asymm(DIGIT *R, size_t na, const DIGIT *A, size_t nb, const DIGIT *B) { size_t delta = na - nb; gf2x_cpy(R, A, delta); PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R + delta, A + delta, B, nb);; } /* aligns first array elements */ static inline void gf2x_add_asymm2(DIGIT *R, size_t na, const DIGIT *A, size_t nb, const DIGIT *B) { size_t delta = na - nb; PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(R, A, B, nb); gf2x_cpy(R + nb, A + nb, delta); } /* Karatsuba with lowered space complexity * T(n) = 3 * ceil(n/2) + T(ceil(n / 2)) */ static void gf2x_mul_kar(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n, DIGIT *stack) { if (n < MIN_KAR_DIGITS) { gf2x_mul_n(R, A, B, n); return; } size_t l = (n + 1) / 2; // limb size = ceil(n / 2) size_t d = n & 1; const DIGIT *a1 = A; // length n - d const DIGIT *a0 = A + l - d; // length n const DIGIT *b1 = B; const DIGIT *b0 = B + l - d; DIGIT *aa = stack; DIGIT *bb = aa + l; DIGIT *cc = bb + l; stack = cc + l; // 3l space requirement at each level DIGIT *c3 = R + l - 2 * d; DIGIT *c2 = c3 + l; DIGIT *c1 = c2 + l; gf2x_mul_kar(c2, a0, b0, l, stack); // L in low part of R gf2x_mul_kar(R, a1, b1, l - d, stack); // H in higher part of R gf2x_add_asymm(aa, l, a0, l - d, a1); // AH + AL gf2x_add_asymm(bb, l, b0, l - d, b1); // BH + BL gf2x_add(cc, c3, c2, l); // HL + LH in cc gf2x_mul_kar(c3, aa, bb, l, stack); // M = (AH + AL) x (BH + BL) gf2x_add_asymm(c3, l, c3, l - 2 * d, R); // add HH gf2x_acc(c2, c1, l); // add LL gf2x_acc(c3, cc, l); // add HL + LH gf2x_acc(c2, cc, l); // add HL + LH } static void gf2x_div_w_plus_one(DIGIT *A, size_t n) { size_t i; for (i = 0; i < n - 2; i++) { A[i + 1] ^= A[i]; // runs n - 2 times } } static void gf2x_shift_left_w(DIGIT *A, size_t n) { size_t i; for (i = 0; i < n - 1; i++) { A[i] = A[i + 1]; } A[i] = 0; } /* Word-aligned Toom-Cook 3, source: * Brent, Richard P., et al. "Faster multiplication in GF (2)[x]." * International Algorithmic Number Theory Symposium. * Springer, Berlin, Heidelberg, 2008. */ static void gf2x_mul_tc3w(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n, DIGIT *stack) { if (n < MIN_TOOM_DIGITS) { gf2x_mul_kar(R, A, B, n, stack); return; } size_t l = (n + 2) / 3; // size of a0, a1, b0, b1 size_t r = n - 2 * l; // remaining sizes (a2, b2) size_t x = 2 * l + 4; // size of c1, c2, c3, c4 size_t z = r + 2 > l + 1 ? r + 2 : l + 1; // size of c5 const DIGIT *a0 = A; const DIGIT *a1 = A + l; const DIGIT *a2 = A + 2 * l; const DIGIT *b0 = B; const DIGIT *b1 = B + l; const DIGIT *b2 = B + 2 * l; DIGIT *c0 = R; // c0 and c4 in the result DIGIT *c4 = R + 4 * l; DIGIT *c1 = stack; // the rest in the stack DIGIT *c2 = c1 + x; DIGIT *c3 = c2 + x; DIGIT *c5 = c3 + x; stack = c5 + z; // Worst-case 7l + 14 // Evaluation c0[0] = 0; // c0[z] = a1*W + a2*W^2 c0[l + 1] = 0; gf2x_cpy(c0 + 1, a1, l); gf2x_acc(c0 + 2, a2, r); c4[0] = 0; // c4[z] = b1*W + b2*W^2 c4[l + 1] = 0; gf2x_cpy(c4 + 1, b1, l); gf2x_acc(c4 + 2, b2, r); gf2x_cpy(c5, a0, l); // c5[l] = a0 + a1 + a2 gf2x_acc(c5, a1, l); gf2x_acc(c5, a2, r); gf2x_cpy(c2, b0, l); // c2[l] = b0 + b1 + b2 gf2x_acc(c2, b1, l); gf2x_acc(c2, b2, r); gf2x_mul_tc3w(c1, c2, c5, l, stack); // c1[2l] = c2 * c5 gf2x_add_asymm2(c5, z, c0, l, c5); // c5[z] += c0, z >= l gf2x_add_asymm2(c2, z, c4, l, c2); // c2[z] += c4, idem gf2x_acc(c0, a0, l); // c0[l] += a0 gf2x_acc(c4, b0, l); // c4[l] += b0 gf2x_mul_tc3w(c3, c2, c5, z, stack); // c3[2z] = c2 * c5 gf2x_mul_tc3w(c2, c0, c4, z, stack); // c2[2z] = c0 * c4 gf2x_mul_tc3w(c0, a0, b0, l, stack); // c0[2l] = a0 * b0 gf2x_mul_tc3w(c4, a2, b2, r, stack); // c4[2r] = a2 * b2 // Interpolation gf2x_acc(c3, c2, 2 * z); // c3[2z] += c2 gf2x_acc(c2, c0, 2 * l); // c2[2z] += c0 gf2x_shift_left_w(c2, 2 * z); // c2[2z] = c2/y + c3 gf2x_acc(c2, c3, 2 * z); gf2x_acc(c2, c4, 2 * r); // c2[2z] += c4 + c4**3 gf2x_acc(c2 + 3, c4, 2 * r); gf2x_div_w_plus_one(c2, 2 * z); // c2[2z-1] = c2/(W+1) gf2x_acc(c1, c0, 2 * l); // c1[2l] += c0 gf2x_acc(c3, c1, 2 * l); // c3[2z] += c1 gf2x_shift_left_w(c3, 2 * z); // c3[2z-2] = c3/(W^2 + W) gf2x_div_w_plus_one(c3, 2 * z - 1); gf2x_add_asymm2(c1, 2 * z, c2, 2 * l, c1); // c1[2z-1] += c2 + c4 gf2x_acc(c1, c4, 2 * r); // size c2 >= c1 >= c4 gf2x_acc(c2, c3, 2 * z - 1); // c2[2z-1] += c3 // Recombination gf2x_cpy(R + 2 * l, c2, 2 * l); gf2x_acc(R + l, c1, 2 * z - 1); gf2x_acc(R + 3 * l, c3, 2 * z - 1); } void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul(DIGIT *R, const DIGIT *A, const DIGIT *B, size_t n) { DIGIT stack[STACK_WORDS]; gf2x_mul_tc3w(R, A, B, n, stack); }