/* This file is for public-key generation */ #include "pk_gen.h" #include "benes.h" #include "controlbits.h" #include "fft.h" #include "params.h" #include "util.h" #include #define min(a, b) (((a) < (b)) ? (a) : (b)) static void de_bitslicing(uint64_t *out, vec256 in[][GFBITS]) { int i, j, r; uint64_t u = 0; for (i = 0; i < (1 << GFBITS); i++) { out[i] = 0 ; } for (i = 0; i < 32; i++) { for (j = GFBITS - 1; j >= 0; j--) { u = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(in[i][j], 0); for (r = 0; r < 64; r++) { out[i * 256 + 0 * 64 + r] <<= 1; out[i * 256 + 0 * 64 + r] |= (u >> r) & 1; } u = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(in[i][j], 1); for (r = 0; r < 64; r++) { out[i * 256 + 1 * 64 + r] <<= 1; out[i * 256 + 1 * 64 + r] |= (u >> r) & 1; } u = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(in[i][j], 2); for (r = 0; r < 64; r++) { out[i * 256 + 2 * 64 + r] <<= 1; out[i * 256 + 2 * 64 + r] |= (u >> r) & 1; } u = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(in[i][j], 3); for (r = 0; r < 64; r++) { out[i * 256 + 3 * 64 + r] <<= 1; out[i * 256 + 3 * 64 + r] |= (u >> r) & 1; } } } } static void to_bitslicing_2x(vec256 out0[][GFBITS], vec256 out1[][GFBITS], const uint64_t *in) { int i, j, k, r; uint64_t u[4] = {0}; for (i = 0; i < 32; i++) { for (j = GFBITS - 1; j >= 0; j--) { for (k = 0; k < 4; k++) { for (r = 63; r >= 0; r--) { u[k] <<= 1; u[k] |= (in[i * 256 + k * 64 + r] >> (j + GFBITS)) & 1; } } out1[i][j] = PQCLEAN_MCELIECE6688128F_AVX_vec256_set4x(u[0], u[1], u[2], u[3]); } for (j = GFBITS - 1; j >= 0; j--) { for (k = 0; k < 4; k++) { for (r = 63; r >= 0; r--) { u[k] <<= 1; u[k] |= (in[i * 256 + k * 64 + r] >> j) & 1; } } out0[i][GFBITS - 1 - j] = PQCLEAN_MCELIECE6688128F_AVX_vec256_set4x(u[0], u[1], u[2], u[3]); } } } static void transpose_64x64(uint64_t *out, const uint64_t *in) { int i, j, s, d; uint64_t x, y; uint64_t masks[6][2] = { {0x5555555555555555, 0xAAAAAAAAAAAAAAAA}, {0x3333333333333333, 0xCCCCCCCCCCCCCCCC}, {0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0}, {0x00FF00FF00FF00FF, 0xFF00FF00FF00FF00}, {0x0000FFFF0000FFFF, 0xFFFF0000FFFF0000}, {0x00000000FFFFFFFF, 0xFFFFFFFF00000000} }; for (i = 0; i < 64; i++) { out[i] = in[i]; } for (d = 5; d >= 0; d--) { s = 1 << d; for (i = 0; i < 64; i += s * 2) { for (j = i; j < i + s; j++) { x = (out[j] & masks[d][0]) | ((out[j + s] & masks[d][0]) << s); y = ((out[j] & masks[d][1]) >> s) | (out[j + s] & masks[d][1]); out[j + 0] = x; out[j + s] = y; } } } } /* return number of trailing zeros of the non-zero input in */ static inline int ctz(uint64_t in) { return (int)_tzcnt_u64(in); } static inline uint64_t same_mask(uint16_t x, uint16_t y) { uint64_t mask; mask = x ^ y; mask -= 1; mask >>= 63; mask = -mask; return mask; } static int mov_columns(uint64_t mat[][ ((SYS_N + 255) / 256) * 4 ], uint32_t *perm) { int i, j, k, s, block_idx, row; uint64_t buf[64], ctz_list[32], t, d, mask; row = GFBITS * SYS_T - 32; block_idx = row / 64; // extract the 32x64 matrix for (i = 0; i < 32; i++) { buf[i] = (mat[ row + i ][ block_idx + 0 ] >> 32) | (mat[ row + i ][ block_idx + 1 ] << 32); } // compute the column indices of pivots by Gaussian elimination. // the indices are stored in ctz_list for (i = 0; i < 32; i++) { t = buf[i]; for (j = i + 1; j < 32; j++) { t |= buf[j]; } if (t == 0) { return -1; // return if buf is not full rank } ctz_list[i] = s = ctz(t); for (j = i + 1; j < 32; j++) { mask = (buf[i] >> s) & 1; mask -= 1; buf[i] ^= buf[j] & mask; } for (j = 0; j < i; j++) { mask = (buf[j] >> s) & 1; mask = -mask; buf[j] ^= buf[i] & mask; } for (j = i + 1; j < 32; j++) { mask = (buf[j] >> s) & 1; mask = -mask; buf[j] ^= buf[i] & mask; } } // updating permutation for (j = 0; j < 32; j++) { for (k = j + 1; k < 64; k++) { d = perm[ row + j ] ^ perm[ row + k ]; d &= same_mask(k, ctz_list[j]); perm[ row + j ] ^= d; perm[ row + k ] ^= d; } } // moving columns of mat according to the column indices of pivots for (i = 0; i < GFBITS * SYS_T; i += 64) { for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) { buf[j] = (mat[ i + j ][ block_idx + 0 ] >> 32) | (mat[ i + j ][ block_idx + 1 ] << 32); } transpose_64x64(buf, buf); for (j = 0; j < 32; j++) { for (k = j + 1; k < 64; k++) { d = buf[ j ] ^ buf[ k ]; d &= same_mask(k, ctz_list[j]); buf[ j ] ^= d; buf[ k ] ^= d; } } transpose_64x64(buf, buf); for (j = 0; j < min(64, GFBITS * SYS_T - i); j++) { mat[ i + j ][ block_idx + 0 ] = (mat[ i + j ][ block_idx + 0 ] << 32 >> 32) | (buf[j] << 32); mat[ i + j ][ block_idx + 1 ] = (mat[ i + j ][ block_idx + 1 ] >> 32 << 32) | (buf[j] >> 32); } } return 0; } #define NBLOCKS1_H ((SYS_N + 63) / 64) #define NBLOCKS2_H ((SYS_N + 255) / 256) #define NBLOCKS1_I ((GFBITS * SYS_T + 63) / 64) int PQCLEAN_MCELIECE6688128F_AVX_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) { int i, j, k; int row, c; uint64_t mat[ GFBITS * SYS_T ][ NBLOCKS2_H * 4 ]; uint64_t mask; vec128 sk_int[ GFBITS ]; vec256 consts[ 32 ][ GFBITS ]; vec256 eval[ 32 ][ GFBITS ]; vec256 prod[ 32 ][ GFBITS ]; vec256 tmp[ GFBITS ]; uint64_t list[1 << GFBITS]; // compute the inverses PQCLEAN_MCELIECE6688128F_AVX_irr_load(sk_int, sk); PQCLEAN_MCELIECE6688128F_AVX_fft(eval, sk_int); PQCLEAN_MCELIECE6688128F_AVX_vec256_copy(prod[0], eval[0]); for (i = 1; i < 32; i++) { PQCLEAN_MCELIECE6688128F_AVX_vec256_mul(prod[i], prod[i - 1], eval[i]); } PQCLEAN_MCELIECE6688128F_AVX_vec256_inv(tmp, prod[31]); for (i = 30; i >= 0; i--) { PQCLEAN_MCELIECE6688128F_AVX_vec256_mul(prod[i + 1], prod[i], tmp); PQCLEAN_MCELIECE6688128F_AVX_vec256_mul(tmp, tmp, eval[i + 1]); } PQCLEAN_MCELIECE6688128F_AVX_vec256_copy(prod[0], tmp); // fill matrix de_bitslicing(list, prod); for (i = 0; i < (1 << GFBITS); i++) { list[i] <<= GFBITS; list[i] |= i; list[i] |= ((uint64_t) perm[i]) << 31; } PQCLEAN_MCELIECE6688128F_AVX_sort_63b(1 << GFBITS, list); to_bitslicing_2x(consts, prod, list); for (i = 0; i < (1 << GFBITS); i++) { perm[i] = list[i] & GFMASK; } for (j = 0; j < NBLOCKS2_H; j++) { for (k = 0; k < GFBITS; k++) { mat[ k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 0); mat[ k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 1); mat[ k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 2); mat[ k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 3); } } for (i = 1; i < SYS_T; i++) { for (j = 0; j < NBLOCKS2_H; j++) { PQCLEAN_MCELIECE6688128F_AVX_vec256_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) { mat[ i * GFBITS + k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 0); mat[ i * GFBITS + k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 1); mat[ i * GFBITS + k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 2); mat[ i * GFBITS + k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128F_AVX_vec256_extract(prod[ j ][ k ], 3); } } } // gaussian elimination for (row = 0; row < PK_NROWS; row++) { i = row >> 6; j = row & 63; if (row == GFBITS * SYS_T - 32) { if (mov_columns(mat, perm)) { return -1; } } for (k = row + 1; k < PK_NROWS; k++) { mask = mat[ row ][ i ] >> j; mask &= 1; mask -= 1; for (c = 0; c < NBLOCKS1_H; c++) { mat[ row ][ c ] ^= mat[ k ][ c ] & mask; } } if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic return -1; } for (k = 0; k < row; k++) { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < NBLOCKS1_H; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; } } for (k = row + 1; k < PK_NROWS; k++) { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < NBLOCKS1_H; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; } } } for (i = 0; i < GFBITS * SYS_T; i++) { for (j = NBLOCKS1_I; j < NBLOCKS1_H - 1; j++) { PQCLEAN_MCELIECE6688128F_AVX_store8(pk, mat[i][j]); pk += 8; } PQCLEAN_MCELIECE6688128F_AVX_store_i(pk, mat[i][j], PK_ROW_BYTES % 8); pk += PK_ROW_BYTES % 8; } // return 0; }