#include "alpha_table.h" #include "bch.h" #include "fft.h" #include "gf.h" #include "parameters.h" #include "vector.h" #include #include #include /** * @file bch.c * Constant time implementation of BCH codes */ static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes); static void message_from_codeword(uint64_t *message, const uint64_t *codeword); static void compute_syndromes(__m256i *syndromes, const uint64_t *rcv); static void compute_roots(uint64_t *error, const uint16_t *sigma); /** * @brief Computes the values alpha^ij for decoding syndromes * * function to initialize a table which contains values alpha^ij for i in [0,N1[ and j in [1,2*PARAM_DELTA] * these values are used in order to compute the syndromes of the received word v(x)=v_0+v_1x+...+v_{n1-1}x^{n1-1} * value alpha^ij is stored in alpha_ij_table[2*PARAM_DELTA*i+j-1] * The syndromes are equal to v(alpha^k) for k in [1,2*PARAM_DELTA] * Size of the table is fixed to match 256 bit representation * Useless values are filled with 0. * * @param[in] exp Exp look-up-table of GF */ void PQCLEAN_HQC128_AVX2_table_alphaij_generation(const uint16_t *exp) { int32_t tmp_value; int16_t *alpha_tmp; // pre-computation of alpha^ij for i in [0, N1[ and j in [1, 2*PARAM_DELTA] // see comment of alpha_ij_table_init() function. for (uint16_t i = 0; i < PARAM_N1; ++i) { tmp_value = 0; alpha_tmp = table_alpha_ij + i * (PARAM_DELTA << 1); for (uint16_t j = 0; j < (PARAM_DELTA << 1); j++) { tmp_value = PQCLEAN_HQC128_AVX2_gf_mod(tmp_value + i); alpha_tmp[j] = gf_exp[tmp_value]; } } } /** * @brief Computes the error locator polynomial (ELP) sigma * * This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding).
* We use the letter p for rho which is initialized at -1/2.
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X).
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p.
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated.
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA. * This means only the first PARAM_DELTA + 1 coefficients of sigma are of value * and we only need to save its first PARAM_DELTA - 1 coefficients. * * @returns the degree of the ELP sigma * @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP * @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes */ static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) { sigma[0] = 1; size_t deg_sigma = 0; size_t deg_sigma_p = 0; uint16_t sigma_copy[PARAM_DELTA - 1] = {0}; size_t deg_sigma_copy = 0; uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1}; int32_t pp = -1; // 2*rho uint16_t d_p = 1; uint16_t d = syndromes[0]; for (size_t mu = 0; mu < PARAM_DELTA; ++mu) { // Save sigma in case we need it to update X_sigma_p memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1)); deg_sigma_copy = deg_sigma; uint16_t dd = PQCLEAN_HQC128_AVX2_gf_mul(d, PQCLEAN_HQC128_AVX2_gf_inverse(d_p)); // 0 if(d == 0) for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) { sigma[i] ^= PQCLEAN_HQC128_AVX2_gf_mul(dd, X_sigma_p[i]); } size_t deg_X = 2 * mu - pp; // 2*(mu-rho) size_t deg_X_sigma_p = deg_X + deg_sigma_p; // mask1 = 0xffff if(d != 0) and 0 otherwise int16_t mask1 = -((uint16_t) - d >> 15); // mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15); // mask12 = 0xffff if the deg_sigma increased and 0 otherwise int16_t mask12 = mask1 & mask2; deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma); if (mu == PARAM_DELTA - 1) { break; } // Update pp, d_p and X_sigma_p if needed pp = (mask12 & (2 * mu)) ^ (~mask12 & pp); d_p = (mask12 & d) ^ (~mask12 & d_p); for (size_t i = PARAM_DELTA - 1; i; --i) { X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]); } X_sigma_p[1] = 0; X_sigma_p[0] = 0; deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p); // Compute the next discrepancy d = syndromes[2 * mu + 2]; for (size_t i = 1; (i <= 2 * mu + 1) && (i <= PARAM_DELTA); ++i) { d ^= PQCLEAN_HQC128_AVX2_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]); } } return deg_sigma; } /** * @brief Retrieves the message message from the codeword codeword * * Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword. * * @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message * @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword */ static void message_from_codeword(uint64_t *message, const uint64_t *codeword) { int32_t val = PARAM_N1 - PARAM_K; uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64); uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64)); size_t index = val / 64; for (size_t i = 0; i < VEC_K_SIZE_64 - 1; ++i) { uint64_t message1 = (codeword[index] & mask1) >> val % 64; uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64); message[i] = message1 | message2; } // Last byte (8-val % 8 is the number of bits given by message1) if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) { uint64_t message1 = (codeword[index] & mask1) >> val % 64; uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64); message[VEC_K_SIZE_64 - 1] = message1 | message2; } else { uint64_t message1 = (codeword[index] & mask1) >> val % 64; message[VEC_K_SIZE_64 - 1] = message1; } } /** * @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector * * Syndromes are the sum of powers of alpha weighted by vector's coefficients. * These powers have been pre-computed in table_alphaPARAM_DELTA.h * Syndromes are 16-bits long , hence we can simultaneously compute 16 syndromes * in a 256-bit register * * @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes * @param[in] rcv Array of size VEC_N1_SIZE_BYTES storing the received word */ void compute_syndromes(__m256i *syndromes, const uint64_t *rcv) { const __m256i zero_256 = _mm256_set1_epi64x(0); const __m256i mask_one = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0); const __m256i mask_two = _mm256_set1_epi64x(-0x7FBFDFEFF7FBFDFF); const __m256i un_256 = _mm256_set1_epi64x(1); __m256i y; __m256i S; __m256i L; __m256i tmp_repeat; uint32_t *aux; int16_t *alpha_tmp; uint32_t i; // static variable so that it is stored in the DATA segment // not in the STACK segment static uint8_t tmp_array[PARAM_N1 + 4]; // +4 to control overflow due to management of 256 bits __m256i *z = (__m256i *) tmp_array; // vectorized version of the separation of the coordinates of the vector v in order to put each coordinate in an unsigned char // aux is used to consider 4 elements in v at each step of the loop aux = (uint32_t *) rcv; for (i = 0; i < ((VEC_N1_SIZE_BYTES >> 2) << 2); i += 4) { // duplicate aux 8 times in y , i.e y= (aux aux aux .... aux) y = _mm256_set1_epi32(*aux); // shuffle the bytes of y so that if aux=(a0 a1 a2 a3) // then y = (a0 a0 a0 a0 a0 a0 a0 a0 a1 a1 a1 a1 a1 a1 a1 a1 .... a3) y = _mm256_shuffle_epi8(y, mask_one); // apply a mask on each byte of y to determine if jth bit of a_k is 0 or 1 z[i >> 2] = _mm256_and_si256(y, mask_two); aux ++; } // Evaluation of the polynomial corresponding to the vector v in alpha^i for i in {1, ..., 2 * PARAM_DELTA} for (size_t j = 0; j < SYND_SIZE_256; ++j) { S = zero_256; alpha_tmp = table_alpha_ij + (j << 4); for (size_t i = 0; i < PARAM_N1; ++i) { tmp_repeat = _mm256_set1_epi64x((long long)(tmp_array[i] != 0)); L = _mm256_cmpeq_epi64(tmp_repeat, un_256); tmp_repeat = _mm256_lddqu_si256((__m256i *)(alpha_tmp + i * (PARAM_DELTA << 1))); L = _mm256_and_si256(L, tmp_repeat); S = _mm256_xor_si256(L, S); } _mm256_storeu_si256(syndromes + j, S); } } /** * @brief Computes the error polynomial error from the error locator polynomial sigma * * See function PQCLEAN_HQC128_AVX2_fft for more details. * * @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial * @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial */ static void compute_roots(uint64_t *error, const uint16_t *sigma) { uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements PQCLEAN_HQC128_AVX2_fft(w, sigma, PARAM_DELTA + 1); PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(error, w); } /** * @brief Decodes the received word * * This function relies on four steps: *
    *
  1. The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes. *
  2. The second step is the computation of the error-locator polynomial sigma. *
  3. The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses. *
  4. The fourth step is the correction of the errors in the received polynomial. *
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error * * @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message * @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word */ void PQCLEAN_HQC128_AVX2_bch_code_decode(uint64_t *message, uint64_t *vector) { uint16_t sigma[1 << PARAM_FFT] = {0}; uint64_t error[(1 << PARAM_M) / 8] = {0}; static __m256i syndromes_256[SYND_SIZE_256]; // Calculate the 2*PARAM_DELTA syndromes compute_syndromes(syndromes_256, vector); // Compute the error locator polynomial sigma // Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room compute_elp(sigma, (uint16_t *)syndromes_256); // Compute the error polynomial error compute_roots(error, sigma); // Add the error polynomial to the received polynomial PQCLEAN_HQC128_AVX2_vect_add(vector, vector, error, VEC_N1_SIZE_64); // Retrieve the message from the decoded codeword message_from_codeword(message, vector); }