#include "api.h" #include "randombytes.h" #include #include #define NTESTS 10 /* allocate a bit more for all keys and messages and * make sure it is not touched by the implementations. */ static void write_canary(unsigned char *d) { *((uint64_t *)d) = 0x0123456789ABCDEF; } static int check_canary(const unsigned char *d) { if (*(uint64_t *)d != 0x0123456789ABCDEF) { return -1; } return 0; } static int test_keys(void) { unsigned char key_a[CRYPTO_BYTES + 16], key_b[CRYPTO_BYTES + 16]; unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16]; unsigned char sendb[CRYPTO_CIPHERTEXTBYTES + 16]; unsigned char sk_a[CRYPTO_SECRETKEYBYTES + 16]; write_canary(key_a); write_canary(key_a + sizeof(key_a) - 8); write_canary(key_b); write_canary(key_b + sizeof(key_b) - 8); write_canary(pk); write_canary(pk + sizeof(pk) - 8); write_canary(sendb); write_canary(sendb + sizeof(sendb) - 8); write_canary(sk_a); write_canary(sk_a + sizeof(sk_a) - 8); int i; for (i = 0; i < NTESTS; i++) { // Alice generates a public key crypto_kem_keypair(pk + 8, sk_a + 8); // Bob derives a secret key and creates a response crypto_kem_enc(sendb + 8, key_b + 8, pk + 8); // Alice uses Bobs response to get her secret key crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8); if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES) != 0) { printf("ERROR KEYS\n"); return 1; } if (check_canary(key_a) || check_canary(key_a + sizeof(key_a) - 8) || check_canary(key_b) || check_canary(key_b + sizeof(key_b) - 8) || check_canary(pk) || check_canary(pk + sizeof(pk) - 8) || check_canary(sendb) || check_canary(sendb + sizeof(sendb) - 8) || check_canary(sk_a) || check_canary(sk_a + sizeof(sk_a) - 8)) { printf("ERROR canary overwritten\n"); return 1; } } return 0; } static int test_invalid_sk_a(void) { unsigned char sk_a[CRYPTO_SECRETKEYBYTES]; unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES]; unsigned char pk[CRYPTO_PUBLICKEYBYTES]; unsigned char sendb[CRYPTO_CIPHERTEXTBYTES]; int i; for (i = 0; i < NTESTS; i++) { // Alice generates a public key crypto_kem_keypair(pk, sk_a); // Bob derives a secret key and creates a response crypto_kem_enc(sendb, key_b, pk); // Replace secret key with random values randombytes(sk_a, CRYPTO_SECRETKEYBYTES); // Alice uses Bobs response to get her secret key crypto_kem_dec(key_a, sendb, sk_a); if (!memcmp(key_a, key_b, CRYPTO_BYTES)) { printf("ERROR invalid sk_a\n"); return 1; } } return 0; } static int test_invalid_ciphertext(void) { unsigned char sk_a[CRYPTO_SECRETKEYBYTES]; unsigned char key_a[CRYPTO_BYTES], key_b[CRYPTO_BYTES]; unsigned char pk[CRYPTO_PUBLICKEYBYTES]; unsigned char sendb[CRYPTO_CIPHERTEXTBYTES]; int i; size_t pos; for (i = 0; i < NTESTS; i++) { randombytes((unsigned char *)&pos, sizeof(size_t)); // Alice generates a public key crypto_kem_keypair(pk, sk_a); // Bob derives a secret key and creates a response crypto_kem_enc(sendb, key_b, pk); // Change some byte in the ciphertext (i.e., encapsulated key) sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23; // Alice uses Bobs response to get her secret key crypto_kem_dec(key_a, sendb, sk_a); if (!memcmp(key_a, key_b, CRYPTO_BYTES)) { printf("ERROR invalid ciphertext\n"); return 1; } } return 0; } int main(void) { int result = 0; result += test_keys(); result += test_invalid_sk_a(); result += test_invalid_ciphertext(); if (result != 0) { puts("Errors occurred"); } return result; }