/* This file is for public-key generation */ #include "pk_gen.h" #include "benes.h" #include "controlbits.h" #include "fft.h" #include "params.h" #include "util.h" #include static void de_bitslicing(uint64_t *out, vec in[][GFBITS]) { int i, j, r; for (i = 0; i < (1 << GFBITS); i++) { out[i] = 0 ; } for (i = 0; i < 128; i++) { for (j = GFBITS - 1; j >= 0; j--) { for (r = 0; r < 64; r++) { out[i * 64 + r] <<= 1; out[i * 64 + r] |= (in[i][j] >> r) & 1; } } } } static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t *in) { int i, j, r; for (i = 0; i < 128; i++) { for (j = GFBITS - 1; j >= 0; j--) { for (r = 63; r >= 0; r--) { out1[i][j] <<= 1; out1[i][j] |= (in[i * 64 + r] >> (j + GFBITS)) & 1; } } for (j = GFBITS - 1; j >= 0; j--) { for (r = 63; r >= 0; r--) { out0[i][GFBITS - 1 - j] <<= 1; out0[i][GFBITS - 1 - j] |= (in[i * 64 + r] >> j) & 1; } } } } int PQCLEAN_MCELIECE6960119_VEC_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) { #define NBLOCKS_H ((SYS_N + 63) / 64) #define NBLOCKS_I ((GFBITS * SYS_T + 63) / 64) const int block_idx = NBLOCKS_I - 1; int tail = (GFBITS * SYS_T) % 64; int i, j, k; int row, c; uint64_t mat[ GFBITS * SYS_T ][ NBLOCKS_H ]; uint64_t ops[ GFBITS * SYS_T ][ NBLOCKS_I ]; uint64_t mask; vec irr_int[2][ GFBITS ]; vec consts[ 128 ][ GFBITS ]; vec eval[ 128 ][ GFBITS ]; vec prod[ 128 ][ GFBITS ]; vec tmp[ GFBITS ]; uint64_t list[1 << GFBITS]; uint64_t one_row[ 128 ]; // compute the inverses PQCLEAN_MCELIECE6960119_VEC_irr_load(irr_int, sk); PQCLEAN_MCELIECE6960119_VEC_fft(eval, irr_int); PQCLEAN_MCELIECE6960119_VEC_vec_copy(prod[0], eval[0]); for (i = 1; i < 128; i++) { PQCLEAN_MCELIECE6960119_VEC_vec_mul(prod[i], prod[i - 1], eval[i]); } PQCLEAN_MCELIECE6960119_VEC_vec_inv(tmp, prod[127]); for (i = 126; i >= 0; i--) { PQCLEAN_MCELIECE6960119_VEC_vec_mul(prod[i + 1], prod[i], tmp); PQCLEAN_MCELIECE6960119_VEC_vec_mul(tmp, tmp, eval[i + 1]); } PQCLEAN_MCELIECE6960119_VEC_vec_copy(prod[0], tmp); // fill matrix de_bitslicing(list, prod); for (i = 0; i < (1 << GFBITS); i++) { list[i] <<= GFBITS; list[i] |= i; list[i] |= ((uint64_t) perm[i]) << 31; } PQCLEAN_MCELIECE6960119_VEC_sort_63b(1 << GFBITS, list); to_bitslicing_2x(consts, prod, list); for (i = 0; i < (1 << GFBITS); i++) { perm[i] = list[i] & GFMASK; } for (j = 0; j < NBLOCKS_I; j++) { for (k = 0; k < GFBITS; k++) { mat[ k ][ j ] = prod[ j ][ k ]; } } for (i = 1; i < SYS_T; i++) { for (j = 0; j < NBLOCKS_I; j++) { PQCLEAN_MCELIECE6960119_VEC_vec_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) { mat[ i * GFBITS + k ][ j ] = prod[ j ][ k ]; } } } // gaussian elimination to obtain an upper triangular matrix // and keep track of the operations in ops for (i = 0; i < PK_NROWS; i++) { for (j = 0; j < NBLOCKS_I; j++) { ops[ i ][ j ] = 0; } } for (i = 0; i < PK_NROWS; i++) { ops[ i ][ i / 64 ] = 1; ops[ i ][ i / 64 ] <<= (i % 64); } uint64_t column[ PK_NROWS ]; for (i = 0; i < PK_NROWS; i++) { column[i] = mat[ i ][ block_idx ]; } for (row = 0; row < PK_NROWS; row++) { i = row >> 6; j = row & 63; for (k = row + 1; k < PK_NROWS; k++) { mask = mat[ row ][ i ] >> j; mask &= 1; mask -= 1; for (c = 0; c < NBLOCKS_I; c++) { mat[ row ][ c ] ^= mat[ k ][ c ] & mask; ops[ row ][ c ] ^= ops[ k ][ c ] & mask; } } if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic return -1; } for (k = row + 1; k < PK_NROWS; k++) { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < NBLOCKS_I; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } } } // computing the lineaer map required to obatin the systematic form for (row = PK_NROWS - 1; row >= 0; row--) { for (k = 0; k < row; k++) { mask = mat[ k ][ row / 64 ] >> (row & 63); mask &= 1; mask = -mask; for (c = 0; c < NBLOCKS_I; c++) { ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } } } // apply the linear map to the non-systematic part for (j = NBLOCKS_I; j < NBLOCKS_H; j++) { for (k = 0; k < GFBITS; k++) { mat[ k ][ j ] = prod[ j ][ k ]; } } for (i = 1; i < SYS_T; i++) { for (j = NBLOCKS_I; j < NBLOCKS_H; j++) { PQCLEAN_MCELIECE6960119_VEC_vec_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) { mat[ i * GFBITS + k ][ j ] = prod[ j ][ k ]; } } } for (i = 0; i < PK_NROWS; i++) { mat[ i ][ block_idx ] = column[i]; } for (row = 0; row < PK_NROWS; row++) { for (k = 0; k < NBLOCKS_H; k++) { one_row[ k ] = 0; } for (c = 0; c < PK_NROWS; c++) { mask = ops[ row ][ c >> 6 ] >> (c & 63); mask &= 1; mask = -mask; for (k = block_idx; k < NBLOCKS_H; k++) { one_row[ k ] ^= mat[ c ][ k ] & mask; } } for (k = block_idx; k < NBLOCKS_H - 1; k++) { one_row[k] = (one_row[k] >> tail) | (one_row[k + 1] << (64 - tail)); PQCLEAN_MCELIECE6960119_VEC_store8(pk, one_row[k]); pk += 8; } one_row[k] >>= tail; PQCLEAN_MCELIECE6960119_VEC_store_i(pk, one_row[k], PK_ROW_BYTES % 8); pk[ (PK_ROW_BYTES % 8) - 1 ] &= (1 << (PK_NCOLS % 8)) - 1; // removing redundant bits pk += PK_ROW_BYTES % 8; } // return 0; }