pqc/crypto_kem/mceliece348864/clean/pk_gen.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

145 lines
3.4 KiB
C

/*
This file is for public-key generation
*/
#include <string.h>
#include "benes.h"
#include "controlbits.h"
#include "gf.h"
#include "params.h"
#include "pk_gen.h"
#include "root.h"
#include "util.h"
/* input: secret key sk */
/* output: public key pk */
int PQCLEAN_MCELIECE348864_CLEAN_pk_gen(uint8_t *pk, uint32_t *perm, const uint8_t *sk) {
int i, j, k;
int row, c;
uint64_t buf[ 1 << GFBITS ];
uint8_t mat[ GFBITS * SYS_T ][ SYS_N / 8 ];
uint8_t mask;
uint8_t b;
gf g[ SYS_T + 1 ]; // Goppa polynomial
gf L[ SYS_N ]; // support
gf inv[ SYS_N ];
//
g[ SYS_T ] = 1;
for (i = 0; i < SYS_T; i++) {
g[i] = PQCLEAN_MCELIECE348864_CLEAN_load2(sk);
g[i] &= GFMASK;
sk += 2;
}
for (i = 0; i < (1 << GFBITS); i++) {
buf[i] = perm[i];
buf[i] <<= 31;
buf[i] |= i;
}
PQCLEAN_MCELIECE348864_CLEAN_sort_63b(1 << GFBITS, buf);
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = buf[i] & GFMASK;
}
for (i = 0; i < SYS_N; i++) {
L[i] = PQCLEAN_MCELIECE348864_CLEAN_bitrev((gf)perm[i]);
}
// filling the matrix
PQCLEAN_MCELIECE348864_CLEAN_root(inv, g, L);
for (i = 0; i < SYS_N; i++) {
inv[i] = PQCLEAN_MCELIECE348864_CLEAN_gf_inv(inv[i]);
}
for (i = 0; i < PK_NROWS; i++) {
for (j = 0; j < SYS_N / 8; j++) {
mat[i][j] = 0;
}
}
for (i = 0; i < SYS_T; i++) {
for (j = 0; j < SYS_N; j += 8) {
for (k = 0; k < GFBITS; k++) {
b = (inv[j + 7] >> k) & 1;
b <<= 1;
b |= (inv[j + 6] >> k) & 1;
b <<= 1;
b |= (inv[j + 5] >> k) & 1;
b <<= 1;
b |= (inv[j + 4] >> k) & 1;
b <<= 1;
b |= (inv[j + 3] >> k) & 1;
b <<= 1;
b |= (inv[j + 2] >> k) & 1;
b <<= 1;
b |= (inv[j + 1] >> k) & 1;
b <<= 1;
b |= (inv[j + 0] >> k) & 1;
mat[ i * GFBITS + k ][ j / 8 ] = b;
}
}
for (j = 0; j < SYS_N; j++) {
inv[j] = PQCLEAN_MCELIECE348864_CLEAN_gf_mul(inv[j], L[j]);
}
}
// gaussian elimination
for (i = 0; i < (GFBITS * SYS_T + 7) / 8; i++) {
for (j = 0; j < 8; j++) {
row = i * 8 + j;
if (row >= GFBITS * SYS_T) {
break;
}
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ row ][ i ] ^ mat[ k ][ i ];
mask >>= j;
mask &= 1;
mask = -mask;
for (c = 0; c < SYS_N / 8; c++) {
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
}
}
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
return -1;
}
for (k = 0; k < GFBITS * SYS_T; k++) {
if (k != row) {
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < SYS_N / 8; c++) {
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
}
}
}
}
}
for (i = 0; i < PK_NROWS; i++) {
memcpy(pk + i * PK_ROW_BYTES, mat[i] + PK_NROWS / 8, PK_ROW_BYTES);
}
return 0;
}