pqc/crypto_sign/sphincs-sha256-256s-simple/clean/hash_sha256.c
Thom Wiggers 07db9c1e60 Put all common primitives on the heap (#266)
* Put AES ctx on the heap

This forces people to use the ``ctx_release`` functions, because otherwise there will be leaks

* Put fips202 on the heap

* Add much more docs for fips202.h

* fixup! Put fips202 on the heap

* Put SHA2 on the heap-supporting API

* Fix clang-tidy warnings

* Fix unreachable free() in falcon

* Fix McEliece8192128f-sse GNU Makefile
2021-03-24 21:02:45 +00:00

163 lines
9.2 KiB
C

#include <stdint.h>
#include <string.h>
#include "address.h"
#include "hash.h"
#include "params.h"
#include "utils.h"
#include "sha2.h"
#include "sha256.h"
/* For SHA256, there is no immediate reason to initialize at the start,
so this function is an empty operation. */
void PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_initialize_hash_function(
hash_state *hash_state_seeded,
const unsigned char *pub_seed, const unsigned char *sk_seed) {
PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_seed_state(hash_state_seeded, pub_seed);
(void)sk_seed; /* Suppress an 'unused parameter' warning. */
}
/* Clean up hash state */
void PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_destroy_hash_function(hash_state *hash_state_seeded) {
sha256_inc_ctx_release(hash_state_seeded);
}
/*
* Computes PRF(key, addr), given a secret key of PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N bytes and an address
*/
void PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_prf_addr(
unsigned char *out, const unsigned char *key, const uint32_t addr[8],
const hash_state *hash_state_seeded) {
unsigned char buf[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_ADDR_BYTES];
unsigned char outbuf[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_OUTPUT_BYTES];
memcpy(buf, key, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_compress_address(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, addr);
sha256(outbuf, buf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_ADDR_BYTES);
memcpy(out, outbuf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
(void)hash_state_seeded; /* Prevent unused parameter warning. */
}
/**
* Computes the message-dependent randomness R, using a secret seed as a key
* for HMAC, and an optional randomization value prefixed to the message.
* This requires m to have at least PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N space
* available in front of the pointer, i.e. before the message to use for the
* prefix. This is necessary to prevent having to move the message around (and
* allocate memory for it).
*/
void PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_gen_message_random(
unsigned char *R,
const unsigned char *sk_prf, const unsigned char *optrand,
const unsigned char *m, size_t mlen, const hash_state *hash_state_seeded) {
unsigned char buf[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_OUTPUT_BYTES];
sha256ctx state;
int i;
/* This implements HMAC-SHA256 */
for (i = 0; i < PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N; i++) {
buf[i] = 0x36 ^ sk_prf[i];
}
memset(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, 0x36, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
sha256_inc_init(&state);
sha256_inc_blocks(&state, buf, 1);
memcpy(buf, optrand, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
/* If optrand + message cannot fill up an entire block */
if (PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + mlen < PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES) {
memcpy(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, m, mlen);
sha256_inc_finalize(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES, &state,
buf, mlen + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
}
/* Otherwise first fill a block, so that finalize only uses the message */
else {
memcpy(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, m, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
sha256_inc_blocks(&state, buf, 1);
m += PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N;
mlen -= PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N;
sha256_inc_finalize(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES, &state, m, mlen);
}
for (i = 0; i < PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N; i++) {
buf[i] = 0x5c ^ sk_prf[i];
}
memset(buf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, 0x5c, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
sha256(buf, buf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_OUTPUT_BYTES);
memcpy(R, buf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
(void)hash_state_seeded; /* Prevent unused parameter warning. */
}
/**
* Computes the message hash using R, the public key, and the message.
* Outputs the message digest and the index of the leaf. The index is split in
* the tree index and the leaf index, for convenient copying to an address.
*/
void PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_hash_message(
unsigned char *digest, uint64_t *tree, uint32_t *leaf_idx,
const unsigned char *R, const unsigned char *pk,
const unsigned char *m, size_t mlen,
const hash_state *hash_state_seeded) {
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BITS (PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_HEIGHT * (PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_D - 1))
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BYTES ((PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BITS + 7) / 8)
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BITS PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_HEIGHT
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BYTES ((PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BITS + 7) / 8)
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_DGST_BYTES (PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_FORS_MSG_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BYTES)
unsigned char seed[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_OUTPUT_BYTES + 4];
/* Round to nearest multiple of PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES */
#define PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS (((PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - 1) & \
-PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES) / PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES)
unsigned char inbuf[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS * PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES];
unsigned char buf[PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_DGST_BYTES];
unsigned char *bufp = buf;
sha256ctx state;
sha256_inc_init(&state);
memcpy(inbuf, R, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N);
memcpy(inbuf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N, pk, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES);
/* If R + pk + message cannot fill up an entire block */
if (PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES + mlen < PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS * PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES) {
memcpy(inbuf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES, m, mlen);
sha256_inc_finalize(seed, &state, inbuf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES + mlen);
}
/* Otherwise first fill a block, so that finalize only uses the message */
else {
memcpy(inbuf + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N + PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES, m,
PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS * PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES);
sha256_inc_blocks(&state, inbuf, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS);
m += PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS * PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES;
mlen -= PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_INBLOCKS * PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_BLOCK_BYTES - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_N - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_PK_BYTES;
sha256_inc_finalize(seed, &state, m, mlen);
}
/* By doing this in two steps, we prevent hashing the message twice;
otherwise each iteration in MGF1 would hash the message again. */
PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_mgf1(bufp, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_DGST_BYTES, seed, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_SHA256_OUTPUT_BYTES);
memcpy(digest, bufp, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_FORS_MSG_BYTES);
bufp += PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_FORS_MSG_BYTES;
*tree = PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_bytes_to_ull(bufp, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BYTES);
*tree &= (~(uint64_t)0) >> (64 - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BITS);
bufp += PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_TREE_BYTES;
*leaf_idx = (uint32_t)PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_bytes_to_ull(
bufp, PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BYTES);
*leaf_idx &= (~(uint32_t)0) >> (32 - PQCLEAN_SPHINCSSHA256256SSIMPLE_CLEAN_LEAF_BITS);
(void)hash_state_seeded; /* Prevent unused parameter warning. */
}