1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 07:59:01 +00:00
pqcrypto/crypto_kem/mceliece8192128/sse/pk_gen.c

269 lines
7.8 KiB
C
Raw Normal View History

/*
This file is for public-key generation
*/
#include "pk_gen.h"
#include "benes.h"
#include "controlbits.h"
#include "fft.h"
#include "params.h"
#include "util.h"
#include <stdint.h>
static void de_bitslicing(uint64_t *out, vec128 in[][GFBITS]) {
int i, j, r;
uint64_t u = 0;
for (i = 0; i < (1 << GFBITS); i++) {
out[i] = 0 ;
}
for (i = 0; i < 64; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 0);
for (r = 0; r < 64; r++) {
out[i * 128 + 0 * 64 + r] <<= 1;
out[i * 128 + 0 * 64 + r] |= (u >> r) & 1;
}
u = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(in[i][j], 1);
for (r = 0; r < 64; r++) {
out[i * 128 + 1 * 64 + r] <<= 1;
out[i * 128 + 1 * 64 + r] |= (u >> r) & 1;
}
}
}
}
static void to_bitslicing_2x(vec128 out0[][GFBITS], vec128 out1[][GFBITS], const uint64_t *in) {
int i, j, k, r;
uint64_t u[2] = {0};
for (i = 0; i < 64; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
for (k = 0; k < 2; k++) {
for (r = 63; r >= 0; r--) {
u[k] <<= 1;
u[k] |= (in[i * 128 + k * 64 + r] >> (j + GFBITS)) & 1;
}
}
out1[i][j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]);
}
for (j = GFBITS - 1; j >= 0; j--) {
for (k = 0; k < 2; k++) {
for (r = 63; r >= 0; r--) {
u[k] <<= 1;
u[k] |= (in[i * 128 + k * 64 + r] >> j) & 1;
}
}
out0[i][GFBITS - 1 - j] = PQCLEAN_MCELIECE8192128_SSE_vec128_set2x(u[0], u[1]);
}
}
}
int PQCLEAN_MCELIECE8192128_SSE_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
int i, j, k;
int row, c, d;
uint64_t mat[ GFBITS * SYS_T ][ 128 ];
uint64_t ops[ GFBITS * SYS_T ][ GFBITS * SYS_T / 64 ];
uint64_t mask;
vec128 irr_int[ GFBITS ];
vec128 consts[ 64 ][ GFBITS ];
vec128 eval[ 64 ][ GFBITS ];
vec128 prod[ 64 ][ GFBITS ];
vec128 tmp[ GFBITS ];
uint64_t list[1 << GFBITS];
uint64_t one_row[ (SYS_N - GFBITS * SYS_T) / 64 ];
// compute the inverses
PQCLEAN_MCELIECE8192128_SSE_irr_load(irr_int, sk);
PQCLEAN_MCELIECE8192128_SSE_fft(eval, irr_int);
PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], eval[0]);
for (i = 1; i < 64; i++) {
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i], prod[i - 1], eval[i]);
}
PQCLEAN_MCELIECE8192128_SSE_vec128_inv(tmp, prod[63]);
for (i = 62; i >= 0; i--) {
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[i + 1], prod[i], tmp);
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(tmp, tmp, eval[i + 1]);
}
PQCLEAN_MCELIECE8192128_SSE_vec128_copy(prod[0], tmp);
// fill matrix
de_bitslicing(list, prod);
for (i = 0; i < (1 << GFBITS); i++) {
list[i] <<= GFBITS;
list[i] |= i;
list[i] |= ((uint64_t) perm[i]) << 31;
}
PQCLEAN_MCELIECE8192128_SSE_sort_63b(1 << GFBITS, list);
to_bitslicing_2x(consts, prod, list);
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = list[i] & GFMASK;
}
for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
}
}
for (i = 1; i < SYS_T; i++) {
for (j = 0; j < (GFBITS * SYS_T + 127) / 128; j++) {
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
}
}
}
// gaussian elimination to obtain an upper triangular matrix
// and keep track of the operations in ops
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
ops[ row ][ c ] = 0;
}
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
ops[ row ][ i ] = 1;
ops[ row ][ i ] <<= j;
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ row ][ i ] >> j;
mask &= 1;
mask -= 1;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
}
}
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
return -1;
}
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
}
// computing the lineaer map required to obatin the systematic form
for (i = (GFBITS * SYS_T) / 64 - 1; i >= 0; i--) {
for (j = 63; j >= 0; j--) {
row = i * 64 + j;
for (k = 0; k < row; k++) {
{
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
}
}
// apply the linear map to the non-systematic part
for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
mat[ k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
}
}
for (i = 1; i < SYS_T; i++) {
for (j = (GFBITS * SYS_T + 127) / 128; j < 64; j++) {
PQCLEAN_MCELIECE8192128_SSE_vec128_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ 2 * j + 0 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 0);
mat[ i * GFBITS + k ][ 2 * j + 1 ] = PQCLEAN_MCELIECE8192128_SSE_vec128_extract(prod[ j ][ k ], 1);
}
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
one_row[ k ] = 0;
}
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
for (d = 0; d < 64; d++) {
mask = ops[ row ][ c ] >> d;
mask &= 1;
mask = -mask;
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
one_row[ k ] ^= mat[ c * 64 + d ][ k + (GFBITS * SYS_T) / 64 ] & mask;
}
}
}
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
PQCLEAN_MCELIECE8192128_SSE_store8(pk, one_row[ k ]);
pk += 8;
}
}
}
//
return 0;
}