1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 16:08:59 +00:00
pqcrypto/crypto_kem/hqc-128/avx2/gf2x.c

559 lines
17 KiB
C
Raw Normal View History

2020-09-07 19:23:34 +01:00
#include "gf2x.h"
#include "parameters.h"
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
/**
* \file gf2x.c
* \brief AVX2 implementation of multiplication of two polynomials
*/
// sizes for Toom-Cook
#define T_TM3_3W_256 32
#define T_TM3_3W_64 128
#define VEC_N_ARRAY_SIZE_VEC CEIL_DIVIDE(PARAM_N, 256) /*!< The number of needed vectors to store PARAM_N bits*/
#define WORD 64
#define LAST64 (PARAM_N >> 6)
uint64_t a1_times_a2[2 * VEC_N_256_SIZE_64 + 1];
uint64_t tmp_reduce[VEC_N_ARRAY_SIZE_VEC << 2];
__m256i *o256 = (__m256i *) tmp_reduce;
uint64_t bloc64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight
uint64_t bit64[PARAM_OMEGA_R]; // Allocation with the biggest possible weight
static inline void reduce(uint64_t *o, const uint64_t *a);
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B);
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B);
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B);
static inline void divByXplus1(__m256i *out, __m256i *in, int size);
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B);
/**
* @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$
*
* This function computes the modular reduction of the polynomial a(x)
*
* @param[out] o Pointer to the result
* @param[in] a Pointer to the polynomial a(x)
*/
static inline void reduce(uint64_t *o, const uint64_t *a) {
__m256i r256, carry256;
__m256i *a256 = (__m256i *) a;
static const int32_t dec64 = PARAM_N & 0x3f;
static const int32_t d0 = WORD - dec64;
int32_t i, i2;
for (i = LAST64 ; i < (PARAM_N >> 5) - 4 ; i += 4) {
r256 = _mm256_lddqu_si256((__m256i const *) (& a[i]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = a256[i2] ^ r256;
}
r256 = (__m256i) {
a[i], a[i + 1], 0x0UL, 0x0UL
};
carry256 = _mm256_lddqu_si256((__m256i const *) (& a[i + 1]));
r256 = _mm256_srli_epi64(r256, dec64);
carry256 = _mm256_slli_epi64(carry256, d0);
r256 ^= carry256;
i2 = (i - LAST64) >> 2;
o256[i2] = (a256[i2] ^ r256);
tmp_reduce[LAST64] &= RED_MASK;
memcpy(o, tmp_reduce, VEC_N_SIZE_BYTES);
}
/**
* @brief Compute C(x) = A(x)*B(x)
* A(x) and B(x) are stored in 128-bit registers
* This function computes A(x)*B(x) using Karatsuba
*
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_1(__m128i *C, __m128i *A, __m128i *B) {
__m128i D1[2];
__m128i D0[2], D2[2];
__m128i Al = _mm_loadu_si128(A);
__m128i Ah = _mm_loadu_si128(A + 1);
__m128i Bl = _mm_loadu_si128(B);
__m128i Bh = _mm_loadu_si128(B + 1);
// Compute Al.Bl=D0
__m128i DD0 = _mm_clmulepi64_si128(Al, Bl, 0);
__m128i DD2 = _mm_clmulepi64_si128(Al, Bl, 0x11);
__m128i AAlpAAh = _mm_xor_si128(Al, _mm_shuffle_epi32(Al, 0x4e));
__m128i BBlpBBh = _mm_xor_si128(Bl, _mm_shuffle_epi32(Bl, 0x4e));
__m128i DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D0[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D0[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));
// Compute Ah.Bh=D2
DD0 = _mm_clmulepi64_si128(Ah, Bh, 0);
DD2 = _mm_clmulepi64_si128(Ah, Bh, 0x11);
AAlpAAh = _mm_xor_si128(Ah, _mm_shuffle_epi32(Ah, 0x4e));
BBlpBBh = _mm_xor_si128(Bh, _mm_shuffle_epi32(Bh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D2[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D2[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));
// Compute AlpAh.BlpBh=D1
// Initialisation of AlpAh and BlpBh
__m128i AlpAh = _mm_xor_si128(Al, Ah);
__m128i BlpBh = _mm_xor_si128(Bl, Bh);
DD0 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0);
DD2 = _mm_clmulepi64_si128(AlpAh, BlpBh, 0x11);
AAlpAAh = _mm_xor_si128(AlpAh, _mm_shuffle_epi32(AlpAh, 0x4e));
BBlpBBh = _mm_xor_si128(BlpBh, _mm_shuffle_epi32(BlpBh, 0x4e));
DD1 = _mm_xor_si128(_mm_xor_si128(DD0, DD2), _mm_clmulepi64_si128(AAlpAAh, BBlpBBh, 0));
D1[0] = _mm_xor_si128(DD0, _mm_unpacklo_epi64(_mm_setzero_si128(), DD1));
D1[1] = _mm_xor_si128(DD2, _mm_unpackhi_epi64(DD1, _mm_setzero_si128()));
// Final comutation of C
__m128i middle = _mm_xor_si128(D0[1], D2[0]);
C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}
/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_2(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[2], D1[2], D2[2], SAA, SBB;
__m128i *A128 = (__m128i *)A, *B128 = (__m128i *)B;
karat_mult_1((__m128i *) D0, A128, B128);
karat_mult_1((__m128i *) D2, A128 + 2, B128 + 2);
SAA = A[0] ^ A[1];
SBB = B[0] ^ B[1];
karat_mult_1((__m128i *) D1, (__m128i *) &SAA, (__m128i *) &SBB);
__m256i middle = _mm256_xor_si256(D0[1], D2[0]);
C[0] = D0[0];
C[1] = middle ^ D0[0] ^ D1[0];
C[2] = middle ^ D1[1] ^ D2[1];
C[3] = D2[1];
}
/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_4(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[4], D1[4], D2[4], SAA[2], SBB[2];
karat_mult_2( D0, A, B);
karat_mult_2(D2, A + 2, B + 2);
SAA[0] = A[0] ^ A[2];
SBB[0] = B[0] ^ B[2];
SAA[1] = A[1] ^ A[3];
SBB[1] = B[1] ^ B[3];
karat_mult_2( D1, SAA, SBB);
__m256i middle0 = _mm256_xor_si256(D0[2], D2[0]);
__m256i middle1 = _mm256_xor_si256(D0[3], D2[1]);
C[0] = D0[0];
C[1] = D0[1];
C[2] = middle0 ^ D0[0] ^ D1[0];
C[3] = middle1 ^ D0[1] ^ D1[1];
C[4] = middle0 ^ D1[2] ^ D2[2];
C[5] = middle1 ^ D1[3] ^ D2[3];
C[6] = D2[2];
C[7] = D2[3];
}
/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_8(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[8], D1[8], D2[8], SAA[4], SBB[4];
karat_mult_4( D0, A, B);
karat_mult_4(D2, A + 4, B + 4);
for (int32_t i = 0 ; i < 4 ; i++) {
int is = i + 4;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}
karat_mult_4(D1, SAA, SBB);
for (int32_t i = 0 ; i < 4 ; i++) {
int32_t is = i + 4;
int32_t is2 = is + 4;
int32_t is3 = is2 + 4;
__m256i middle = _mm256_xor_si256(D0[is], D2[i]);
C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}
/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_16(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[16], D1[16], D2[16], SAA[8], SBB[8];
karat_mult_8( D0, A, B);
karat_mult_8(D2, A + 8, B + 8);
for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}
karat_mult_8( D1, SAA, SBB);
for (int32_t i = 0 ; i < 8 ; i++) {
int32_t is = i + 8;
int32_t is2 = is + 8;
int32_t is3 = is2 + 8;
__m256i middle = _mm256_xor_si256(D0[is], D2[i]);
C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}
/**
* @brief Compute C(x) = A(x)*B(x)
*
* This function computes A(x)*B(x) using Karatsuba
* A(x) and B(x) are stored in 256-bit registers
* @param[out] C Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
inline static void karat_mult_32(__m256i *C, __m256i *A, __m256i *B) {
__m256i D0[32], D1[32], D2[32], SAA[16], SBB[16];
karat_mult_16( D0, A, B);
karat_mult_16(D2, A + 16, B + 16);
for (int32_t i = 0 ; i < 16 ; i++) {
int is = i + 16;
SAA[i] = A[i] ^ A[is];
SBB[i] = B[i] ^ B[is];
}
karat_mult_16( D1, SAA, SBB);
for (int32_t i = 0 ; i < 16 ; i++) {
int32_t is = i + 16;
int32_t is2 = is + 16;
int32_t is3 = is2 + 16;
__m256i middle = _mm256_xor_si256(D0[is], D2[i]);
C[i] = D0[i];
C[is] = middle ^ D0[i] ^ D1[i];
C[is2] = middle ^ D1[is] ^ D2[is];
C[is3] = D2[is];
}
}
/**
* @brief Compute B(x) = A(x)/(x+1)
*
* This function computes A(x)/(x+1) using a Quercia like algorithm
* @param[out] out Pointer to the result
* @param[in] in Pointer to the polynomial A(x)
* @param[in] size used to define the number of coeeficients of A
*/
static inline void divByXplus1(__m256i *out, __m256i *in, int size) {
uint64_t *A = (uint64_t *) in;
uint64_t *B = (uint64_t *) out;
B[0] = A[0];
for (int32_t i = 1 ; i < 2 * (size << 2) ; i++) {
B[i] = B[i - 1] ^ A[i];
}
}
/**
* @brief Compute C(x) = A(x)*B(x) using TOOM3Mult
*
* This function computes A(x)*B(x) using TOOM-COOK3 Multiplication
* last multiplication are done using Karatsuba
* @param[out] Out Pointer to the result
* @param[in] A Pointer to the polynomial A(x)
* @param[in] B Pointer to the polynomial B(x)
*/
static void TOOM3Mult(uint64_t *Out, const uint64_t *A, const uint64_t *B) {
static __m256i U0[T_TM3_3W_256], V0[T_TM3_3W_256], U1[T_TM3_3W_256], V1[T_TM3_3W_256], U2[T_TM3_3W_256], V2[T_TM3_3W_256];
static __m256i W0[2 * (T_TM3_3W_256)], W1[2 * (T_TM3_3W_256)], W2[2 * (T_TM3_3W_256)], W3[2 * (T_TM3_3W_256)], W4[2 * (T_TM3_3W_256)];
static __m256i tmp[2 * (T_TM3_3W_256)];
static __m256i ro256[6 * (T_TM3_3W_256)];
const __m256i zero = (__m256i) {
0ul, 0ul, 0ul, 0ul
};
int32_t T2 = T_TM3_3W_64 << 1;
for (int32_t i = 0 ; i < T_TM3_3W_256 - 1 ; i++) {
int32_t i4 = i << 2;
int32_t i42 = i4 - 2;
U0[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4]));
V0[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4]));
U1[i] = _mm256_lddqu_si256((__m256i const *)(& A[i42 + T_TM3_3W_64]));
V1[i] = _mm256_lddqu_si256((__m256i const *)(& B[i42 + T_TM3_3W_64]));
U2[i] = _mm256_lddqu_si256((__m256i const *)(& A[i4 + T2 - 4]));
V2[i] = _mm256_lddqu_si256((__m256i const *)(& B[i4 + T2 - 4]));
}
for (int32_t i = T_TM3_3W_256 - 1 ; i < T_TM3_3W_256 ; i++) {
int32_t i4 = i << 2;
int32_t i41 = i4 + 1;
U0[i] = (__m256i) {
A[i4], A[i41], 0x0ul, 0x0ul
};
V0[i] = (__m256i) {
B[i4], B[i41], 0x0ul, 0x0ul
};
U1[i] = (__m256i) {
A[i4 + T_TM3_3W_64 - 2], A[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
V1[i] = (__m256i) {
B[i4 + T_TM3_3W_64 - 2], B[i41 + T_TM3_3W_64 - 2], 0x0ul, 0x0ul
};
U2[i] = (__m256i) {
A[i4 - 4 + T2], A[i4 - 3 + T2], 0x0ul, 0x0ul
};
V2[i] = (__m256i) {
B[i4 - 4 + T2], B[i4 - 3 + T2], 0x0ul, 0x0ul
};
}
// Evaluation phase : x= X^64
// P(X): P0=(0); P1=(1); P2=(x); P3=(1+x); P4=(\infty)
// Evaluation: 5*2 add, 2*2 shift; 5 mul (n)
//W3 = U2 + U1 + U0 ; W2 = V2 + V1 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] = U0[i] ^ U1[i] ^ U2[i];
W2[i] = V0[i] ^ V1[i] ^ V2[i];
}
//W1 = W2 * W3
karat_mult_32( W1, W2, W3);
//W0 =(U1 + U2*x)*x ; W4 =(V1 + V2*x)*x (SIZE = T_TM3_3W_256 !)
int64_t *U1_64 = ((int64_t *) U1);
int64_t *U2_64 = ((int64_t *) U2);
int64_t *V1_64 = ((int64_t *) V1);
int64_t *V2_64 = ((int64_t *) V2);
W0[0] = _mm256_set_epi64x(U1_64[2] ^ U2_64[1], U1_64[1] ^ U2_64[0], U1_64[0], 0);
W4[0] = _mm256_set_epi64x(V1_64[2] ^ V2_64[1], V1_64[1] ^ V2_64[0], V1_64[0], 0);
U1_64 = ((int64_t *) U1);
U2_64 = ((int64_t *) U2);
V1_64 = ((int64_t *) V1);
V2_64 = ((int64_t *) V2);
for (int32_t i = 1 ; i < T_TM3_3W_256 ; i++) {
int i4 = i << 2;
W0[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 - 1]));
W0[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 - 2]));
W4[i] = _mm256_lddqu_si256((__m256i const *)(& V1_64[i4 - 1]));
W4[i] ^= _mm256_lddqu_si256((__m256i const *)(& V2_64[i4 - 2]));
}
//W3 = W3 + W0 ; W2 = W2 + W4
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W3[i] ^= W0[i];
W2[i] ^= W4[i];
}
//W0 = W0 + U0 ; W4 = W4 + V0
for (int32_t i = 0 ; i < T_TM3_3W_256 ; i++) {
W0[i] ^= U0[i];
W4[i] ^= V0[i];
}
//W3 = W3 * W2 ; W2 = W0 * W4
karat_mult_32(tmp, W3, W2);
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] = tmp[i];
}
karat_mult_32(W2, W0, W4);
//W4 = U2 * V2 ; W0 = U0 * V0
karat_mult_32(W4, U2, V2);
karat_mult_32(W0, U0, V0);
// Interpolation phase
// 9 add, 1 shift, 1 Smul, 2 Sdiv (2n)
//W3 = W3 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W3[i] ^= W2[i];
}
//W1 = W1 + W0
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W0[i];
}
//W2 =(W2 + W0)/x -> x = X^64
U1_64 = ((int64_t *) W2);
U2_64 = ((int64_t *) W0);
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) ; i++) {
int32_t i4 = i << 2;
W2[i] = _mm256_lddqu_si256((__m256i const *)(& U1_64[i4 + 1]));
W2[i] ^= _mm256_lddqu_si256((__m256i const *)(& U2_64[i4 + 1]));
}
//W2 =(W2 + W3 + W4*(x^3+1))/(x+1)
U1_64 = ((int64_t *) W4);
__m256i *U1_256 = (__m256i *) (U1_64 + 1);
tmp[0] = W2[0] ^ W3[0] ^ W4[0] ^ (__m256i) {
0x0ul, 0x0ul, 0x0ul, U1_64[0]
};
for (int32_t i = 1 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
tmp[i] = W2[i] ^ W3[i] ^ W4[i] ^ _mm256_lddqu_si256(&U1_256[i - 1]);
}
divByXplus1(W2, tmp, T_TM3_3W_256);
W2[2 * (T_TM3_3W_256) - 1] = zero;
//W3 =(W3 + W1)/(x*(x+1))
U1_64 = (int64_t *) W3;
U1_256 = (__m256i *) (U1_64 + 1);
U2_64 = (int64_t *) W1;
__m256i *U2_256 = (__m256i *) (U2_64 + 1);
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) - 1 ; i++) {
tmp[i] = _mm256_lddqu_si256(&U1_256[i]) ^ _mm256_lddqu_si256(&U2_256[i]);
}
divByXplus1(W3, tmp, T_TM3_3W_256);
W3[2 * (T_TM3_3W_256) - 1] = zero;
//W1 = W1 + W4 + W2
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W1[i] ^= W2[i] ^ W4[i];
}
//W2 = W2 + W3
for (int32_t i = 0 ; i < 2 * (T_TM3_3W_256) ; i++) {
W2[i] ^= W3[i];
}
// Recomposition
//W = W0+ W1*x+ W2*x^2+ W3*x^3 + W4*x^4
//W0, W1, W4 of size 2*T_TM3_3W_256, W2 and W3 of size 2*(T_TM3_3W_256)
for (int32_t i = 0 ; i < (T_TM3_3W_256 << 1) - 1 ; i++) {
ro256[i] = W0[i];
ro256[i + 2 * T_TM3_3W_256 - 1] = W2[i];
ro256[i + 4 * T_TM3_3W_256 - 2] = W4[i];
}
ro256[(T_TM3_3W_256 << 1) - 1] = W0[(T_TM3_3W_256 << 1) - 1] ^ W2[0];
ro256[(T_TM3_3W_256 << 2) - 2] = W2[(T_TM3_3W_256 << 1) - 1] ^ W4[0];
ro256[(T_TM3_3W_256 * 6) - 3] = W4[(T_TM3_3W_256 << 1) - 1];
U1_64 = ((int64_t *) &ro256[T_TM3_3W_256]);
U1_256 = (__m256i *) (U1_64 - 2);
U2_64 = ((int64_t *) &ro256[3 * T_TM3_3W_256 - 1]);
U2_256 = (__m256i *) (U2_64 - 2);
for (int32_t i = 0 ; i < T_TM3_3W_256 << 1 ; i++) {
_mm256_storeu_si256(&U1_256[i], W1[i] ^ _mm256_lddqu_si256(&U1_256[i]));
_mm256_storeu_si256(&U2_256[i], W3[i] ^ _mm256_loadu_si256(&U2_256[i]));
}
for (int32_t i = 0 ; i < 6 * T_TM3_3W_256 - 2 ; i++) {
uint64_t *out64 = Out + (i << 2);
_mm256_storeu_si256((__m256i *)out64, ro256[i]);
}
}
/**
* @brief Multiply two polynomials modulo \f$ X^n - 1\f$.
*
* This functions multiplies a sparse polynomial <b>a1</b> (of Hamming weight equal to <b>weight</b>)
* and a dense polynomial <b>a2</b>. The multiplication is done modulo \f$ X^n - 1\f$.
*
* @param[out] o Pointer to the result
* @param[in] a1 Pointer to a polynomial
* @param[in] a2 Pointer to a polynomial
*/
void PQCLEAN_HQC128_AVX2_vect_mul(uint64_t *o, const uint64_t *a1, const uint64_t *a2) {
TOOM3Mult(a1_times_a2, a1, a2);
reduce(o, a1_times_a2);
// clear all
memset(a1_times_a2, 0, (VEC_N_SIZE_64 << 1) * sizeof(uint64_t));
}