1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-30 03:11:43 +00:00
pqcrypto/crypto_kem/mceliece6688128/avx/pk_gen.c

287 lines
8.8 KiB
C
Raw Normal View History

/*
This file is for public-key generation
*/
#include "pk_gen.h"
#include "benes.h"
#include "controlbits.h"
#include "fft.h"
#include "params.h"
#include "util.h"
#include <stdint.h>
static void de_bitslicing(uint64_t *out, vec256 in[][GFBITS]) {
int i, j, r;
uint64_t u = 0;
for (i = 0; i < (1 << GFBITS); i++) {
out[i] = 0 ;
}
for (i = 0; i < 32; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
u = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(in[i][j], 0);
for (r = 0; r < 64; r++) {
out[i * 256 + 0 * 64 + r] <<= 1;
out[i * 256 + 0 * 64 + r] |= (u >> r) & 1;
}
u = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(in[i][j], 1);
for (r = 0; r < 64; r++) {
out[i * 256 + 1 * 64 + r] <<= 1;
out[i * 256 + 1 * 64 + r] |= (u >> r) & 1;
}
u = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(in[i][j], 2);
for (r = 0; r < 64; r++) {
out[i * 256 + 2 * 64 + r] <<= 1;
out[i * 256 + 2 * 64 + r] |= (u >> r) & 1;
}
u = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(in[i][j], 3);
for (r = 0; r < 64; r++) {
out[i * 256 + 3 * 64 + r] <<= 1;
out[i * 256 + 3 * 64 + r] |= (u >> r) & 1;
}
}
}
}
static void to_bitslicing_2x(vec256 out0[][GFBITS], vec256 out1[][GFBITS], const uint64_t *in) {
int i, j, k, r;
uint64_t u[4] = {0};
for (i = 0; i < 32; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
for (k = 0; k < 4; k++) {
for (r = 63; r >= 0; r--) {
u[k] <<= 1;
u[k] |= (in[i * 256 + k * 64 + r] >> (j + GFBITS)) & 1;
}
}
out1[i][j] = PQCLEAN_MCELIECE6688128_AVX_vec256_set4x(u[0], u[1], u[2], u[3]);
}
for (j = GFBITS - 1; j >= 0; j--) {
for (k = 0; k < 4; k++) {
for (r = 63; r >= 0; r--) {
u[k] <<= 1;
u[k] |= (in[i * 256 + k * 64 + r] >> j) & 1;
}
}
out0[i][GFBITS - 1 - j] = PQCLEAN_MCELIECE6688128_AVX_vec256_set4x(u[0], u[1], u[2], u[3]);
}
}
}
#define NBLOCKS1_H ((SYS_N + 63) / 64)
#define NBLOCKS2_H ((SYS_N + 255) / 256)
#define NBLOCKS1_I ((GFBITS * SYS_T + 63) / 64)
#define NBLOCKS2_I ((GFBITS * SYS_T + 255) / 256)
int PQCLEAN_MCELIECE6688128_AVX_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
const int block_idx = NBLOCKS1_I;
int i, j, k;
int row, c;
uint64_t mat[ GFBITS * SYS_T ][ NBLOCKS2_H * 4 ];
uint64_t ops[ GFBITS * SYS_T ][ NBLOCKS1_I ];
uint64_t mask;
vec128 sk_int[ GFBITS ];
vec256 consts[ 32 ][ GFBITS ];
vec256 eval[ 32 ][ GFBITS ];
vec256 prod[ 32 ][ GFBITS ];
vec256 tmp[ GFBITS ];
uint64_t list[1 << GFBITS];
uint64_t one_row[ 128 ];
// compute the inverses
PQCLEAN_MCELIECE6688128_AVX_irr_load(sk_int, sk);
PQCLEAN_MCELIECE6688128_AVX_fft(eval, sk_int);
PQCLEAN_MCELIECE6688128_AVX_vec256_copy(prod[0], eval[0]);
for (i = 1; i < 32; i++) {
PQCLEAN_MCELIECE6688128_AVX_vec256_mul(prod[i], prod[i - 1], eval[i]);
}
PQCLEAN_MCELIECE6688128_AVX_vec256_inv(tmp, prod[31]);
for (i = 30; i >= 0; i--) {
PQCLEAN_MCELIECE6688128_AVX_vec256_mul(prod[i + 1], prod[i], tmp);
PQCLEAN_MCELIECE6688128_AVX_vec256_mul(tmp, tmp, eval[i + 1]);
}
PQCLEAN_MCELIECE6688128_AVX_vec256_copy(prod[0], tmp);
// fill matrix
de_bitslicing(list, prod);
for (i = 0; i < (1 << GFBITS); i++) {
list[i] <<= GFBITS;
list[i] |= i;
list[i] |= ((uint64_t) perm[i]) << 31;
}
PQCLEAN_MCELIECE6688128_AVX_sort_63b(1 << GFBITS, list);
to_bitslicing_2x(consts, prod, list);
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = list[i] & GFMASK;
}
for (j = 0; j < NBLOCKS2_I; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 0);
mat[ k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 1);
mat[ k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 2);
mat[ k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 3);
}
}
for (i = 1; i < SYS_T; i++) {
for (j = 0; j < NBLOCKS2_I; j++) {
PQCLEAN_MCELIECE6688128_AVX_vec256_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 0);
mat[ i * GFBITS + k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 1);
mat[ i * GFBITS + k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 2);
mat[ i * GFBITS + k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 3);
}
}
}
// gaussian elimination to obtain an upper triangular matrix
// and keep track of the operations in ops
for (i = 0; i < PK_NROWS; i++) {
for (j = 0; j < NBLOCKS1_I; j++) {
ops[ i ][ j ] = 0;
}
}
for (i = 0; i < PK_NROWS; i++) {
ops[ i ][ i / 64 ] = 1;
ops[ i ][ i / 64 ] <<= (i % 64);
}
uint64_t column[ PK_NROWS ];
for (i = 0; i < PK_NROWS; i++) {
column[i] = mat[ i ][ block_idx ];
}
for (row = 0; row < PK_NROWS; row++) {
i = row >> 6;
j = row & 63;
for (k = row + 1; k < PK_NROWS; k++) {
mask = mat[ row ][ i ] >> j;
mask &= 1;
mask -= 1;
for (c = 0; c < NBLOCKS1_I; c++) {
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
}
}
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
return -1;
}
for (k = row + 1; k < PK_NROWS; k++) {
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < NBLOCKS1_I; c++) {
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
// computing the lineaer map required to obatin the systematic form
for (row = PK_NROWS - 1; row >= 0; row--) {
for (k = 0; k < row; k++) {
mask = mat[ k ][ row / 64 ] >> (row & 63);
mask &= 1;
mask = -mask;
for (c = 0; c < NBLOCKS1_I; c++) {
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
// apply the linear map to the non-systematic part
for (j = NBLOCKS2_I; j < NBLOCKS2_H; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 0);
mat[ k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 1);
mat[ k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 2);
mat[ k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 3);
}
}
for (i = 1; i < SYS_T; i++) {
for (j = NBLOCKS2_I; j < NBLOCKS2_H; j++) {
PQCLEAN_MCELIECE6688128_AVX_vec256_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ 4 * j + 0 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 0);
mat[ i * GFBITS + k ][ 4 * j + 1 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 1);
mat[ i * GFBITS + k ][ 4 * j + 2 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 2);
mat[ i * GFBITS + k ][ 4 * j + 3 ] = PQCLEAN_MCELIECE6688128_AVX_vec256_extract(prod[ j ][ k ], 3);
}
}
}
for (i = 0; i < PK_NROWS; i++) {
mat[ i ][ block_idx ] = column[i];
}
for (row = 0; row < PK_NROWS; row++) {
for (k = 0; k < NBLOCKS1_H; k++) {
one_row[ k ] = 0;
}
for (c = 0; c < PK_NROWS; c++) {
mask = ops[ row ][ c >> 6 ] >> (c & 63);
mask &= 1;
mask = -mask;
for (k = block_idx; k < NBLOCKS1_H; k++) {
one_row[ k ] ^= mat[ c ][ k ] & mask;
}
}
for (k = block_idx; k < NBLOCKS1_H - 1; k++) {
PQCLEAN_MCELIECE6688128_AVX_store8(pk, one_row[k]);
pk += 8;
}
PQCLEAN_MCELIECE6688128_AVX_store_i(pk, one_row[k], PK_ROW_BYTES % 8);
pk += PK_ROW_BYTES % 8;
}
//
return 0;
}