diff --git a/CMakeLists.txt b/CMakeLists.txt index e1b887ce..2115d968 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -239,7 +239,6 @@ add_subdirectory(src/kem/kyber/kyber1024/clean) add_subdirectory(src/kem/hqc/hqc-rmrs-128/clean) add_subdirectory(src/kem/hqc/hqc-rmrs-192/clean) add_subdirectory(src/kem/hqc/hqc-rmrs-256/clean) -add_subdirectory(src/kem/sike) add_subdirectory(src/kem/mceliece/mceliece348864/clean) add_subdirectory(src/kem/mceliece/mceliece460896/clean) add_subdirectory(src/kem/mceliece/mceliece6688128/clean) diff --git a/README.md b/README.md index 12a3598c..1dd86c56 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,6 @@ KEM candidates for an additional round 4. | Name | x86 optimized | |--------------------------|------------| | HQC-RMRS | x | -| SIKE/p434 | x | | McEliece | | ## Building diff --git a/public/pqc/pqc.h b/public/pqc/pqc.h index 8711030b..be3ebb5c 100644 --- a/public/pqc/pqc.h +++ b/public/pqc/pqc.h @@ -50,7 +50,6 @@ extern "C" { _(HQCRMRS128) \ _(HQCRMRS192) \ _(HQCRMRS256) \ - _(SIKE434) \ _(MCELIECE348864) \ _(MCELIECE460896) \ _(MCELIECE6688128) \ diff --git a/src/capi/schemes.h b/src/capi/schemes.h index b7b9ba39..72e4a43e 100644 --- a/src/capi/schemes.h +++ b/src/capi/schemes.h @@ -89,6 +89,5 @@ #include "kem/hqc/hqc-rmrs-128/avx2/api.h" #include "kem/hqc/hqc-rmrs-192/avx2/api.h" #include "kem/hqc/hqc-rmrs-256/avx2/api.h" -#include "kem/sike/includes/sike/sike.h" #endif diff --git a/src/kem/sike/CMakeLists.txt b/src/kem/sike/CMakeLists.txt deleted file mode 100644 index bd736a75..00000000 --- a/src/kem/sike/CMakeLists.txt +++ /dev/null @@ -1,20 +0,0 @@ -set( - SRC_CLEAN_SIKE_P434 - p434/fpx.c - p434/fp_generic.c - p434/isogeny.c - p434/params.c - p434/sike.c) - -if(${ARCH} STREQUAL "ARCH_x86_64" AND NOT ${NO_ASM}) -add_definitions(-DPQC_ASM=1) -set( - SRC_CLEAN_SIKE_P434 - ${SRC_CLEAN_SIKE_P434} - p434/fp-x86_64.S -) -endif() - -define_kem_alg( - sike_p434_clean - PQC_SIKEP434_CLEAN "${SRC_CLEAN_SIKE_P434}" "${CMAKE_CURRENT_SOURCE_DIR}") diff --git a/src/kem/sike/includes/sike/sike.h b/src/kem/sike/includes/sike/sike.h deleted file mode 100644 index 869eab6a..00000000 --- a/src/kem/sike/includes/sike/sike.h +++ /dev/null @@ -1,81 +0,0 @@ -#ifndef SIKE_H_ -#define SIKE_H_ - -#include -#include -#include "randombytes.h" - -/* SIKE - * - * SIKE is a isogeny based post-quantum key encapsulation mechanism. Description of the - * algorithm is provided in [SIKE]. This implementation uses 434-bit field size. The code - * is based on "Additional_Implementations" from PQC NIST submission package which can - * be found here: - * https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip - * - * [SIKE] https://sike.org/files/SIDH-spec.pdf - */ - -// SIKE_PUB_BYTESZ is the number of bytes in a public key. -#define SIKE_PUB_BYTESZ 330 -// SIKE_PRV_BYTESZ is the number of bytes in a private key. -#define SIKE_PRV_BYTESZ 28 -// SIKE_SS_BYTESZ is the number of bytes in a shared key. -#define SIKE_SS_BYTESZ 16 -// SIKE_MSG_BYTESZ is the number of bytes in a random bit string concatenated -// with the public key (see 1.4 of SIKE). -#define SIKE_MSG_BYTESZ 16 -// SIKE_SS_BYTESZ is the number of bytes in a ciphertext. -#define SIKE_CT_BYTESZ (SIKE_PUB_BYTESZ + SIKE_MSG_BYTESZ) - -// SIKE_keypair outputs a public and secret key. In case of success -// function returns 1, otherwise 0. - int SIKE_keypair( - uint8_t out_priv[SIKE_PRV_BYTESZ], - uint8_t out_pub[SIKE_PUB_BYTESZ]); - -// SIKE_encaps generates and encrypts a random session key, writing those values to -// |out_shared_key| and |out_ciphertext|, respectively. - void SIKE_encaps( - uint8_t out_shared_key[SIKE_SS_BYTESZ], - uint8_t out_ciphertext[SIKE_CT_BYTESZ], - const uint8_t pub_key[SIKE_PUB_BYTESZ]); - -// SIKE_decaps outputs a random session key, writing it to |out_shared_key|. - void SIKE_decaps( - uint8_t out_shared_key[SIKE_SS_BYTESZ], - const uint8_t ciphertext[SIKE_CT_BYTESZ], - const uint8_t pub_key[SIKE_PUB_BYTESZ], - const uint8_t priv_key[SIKE_PRV_BYTESZ]); - -// boilerplate needed for integration -#define PQCLEAN_SIKE434_CLEAN_CRYPTO_SECRETKEYBYTES SIKE_PRV_BYTESZ+SIKE_MSG_BYTESZ+SIKE_PUB_BYTESZ -#define PQCLEAN_SIKE434_CLEAN_CRYPTO_PUBLICKEYBYTES SIKE_PUB_BYTESZ -#define PQCLEAN_SIKE434_CLEAN_CRYPTO_CIPHERTEXTBYTES SIKE_CT_BYTESZ -#define PQCLEAN_SIKE434_CLEAN_CRYPTO_BYTES SIKE_SS_BYTESZ -#define PQCLEAN_SIKE434_CLEAN_CRYPTO_ALGNAME "SIKE/p434" - -#define PQCLEAN_SIKE434_AVX2_CRYPTO_SECRETKEYBYTES SIKE_PRV_BYTESZ+SIKE_MSG_BYTESZ+SIKE_PUB_BYTESZ -#define PQCLEAN_SIKE434_AVX2_CRYPTO_PUBLICKEYBYTES SIKE_PUB_BYTESZ -#define PQCLEAN_SIKE434_AVX2_CRYPTO_CIPHERTEXTBYTES SIKE_CT_BYTESZ -#define PQCLEAN_SIKE434_AVX2_CRYPTO_BYTES SIKE_SS_BYTESZ -#define PQCLEAN_SIKE434_AVX2_CRYPTO_ALGNAME "SIKE/p434" - -static inline int PQCLEAN_SIKE434_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { - SIKE_keypair(sk, pk); - // KATs require the public key to be concatenated after private key - memcpy(&sk[SIKE_MSG_BYTESZ+SIKE_PRV_BYTESZ], pk, SIKE_PUB_BYTESZ); - return 0; -} -static inline int PQCLEAN_SIKE434_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { - SIKE_encaps(ss,ct,pk); - return 0; -} - -static inline int PQCLEAN_SIKE434_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { - SIKE_decaps(ss, ct, &sk[SIKE_PRV_BYTESZ+SIKE_MSG_BYTESZ], sk); - return 0; -} - - -#endif diff --git a/src/kem/sike/p434/fp-x86_64.S b/src/kem/sike/p434/fp-x86_64.S deleted file mode 100644 index 1e40a2d5..00000000 --- a/src/kem/sike/p434/fp-x86_64.S +++ /dev/null @@ -1,926 +0,0 @@ -.text - -.Lp434x2: -.quad 0xFFFFFFFFFFFFFFFE -.quad 0xFFFFFFFFFFFFFFFF -.quad 0xFB82ECF5C5FFFFFF -.quad 0xF78CB8F062B15D47 -.quad 0xD9F8BFAD038A40AC -.quad 0x0004683E4E2EE688 - - -.Lp434p1: -.quad 0xFDC1767AE3000000 -.quad 0x7BC65C783158AEA3 -.quad 0x6CFC5FD681C52056 -.quad 0x0002341F27177344 - -.globl sike_fpadd_asm -.hidden sike_fpadd_asm -.type sike_fpadd_asm,@function -sike_fpadd_asm: -.cfi_startproc - pushq %r12 -.cfi_adjust_cfa_offset 8 -.cfi_offset r12, -16 - pushq %r13 -.cfi_adjust_cfa_offset 8 -.cfi_offset r13, -24 - pushq %r14 -.cfi_adjust_cfa_offset 8 -.cfi_offset r14, -32 - - xorq %rax,%rax - - movq 0(%rdi),%r8 - addq 0(%rsi),%r8 - movq 8(%rdi),%r9 - adcq 8(%rsi),%r9 - movq 16(%rdi),%r10 - adcq 16(%rsi),%r10 - movq 24(%rdi),%r11 - adcq 24(%rsi),%r11 - movq 32(%rdi),%r12 - adcq 32(%rsi),%r12 - movq 40(%rdi),%r13 - adcq 40(%rsi),%r13 - movq 48(%rdi),%r14 - adcq 48(%rsi),%r14 - - movq .Lp434x2(%rip),%rcx - subq %rcx,%r8 - movq 8+.Lp434x2(%rip),%rcx - sbbq %rcx,%r9 - sbbq %rcx,%r10 - movq 16+.Lp434x2(%rip),%rcx - sbbq %rcx,%r11 - movq 24+.Lp434x2(%rip),%rcx - sbbq %rcx,%r12 - movq 32+.Lp434x2(%rip),%rcx - sbbq %rcx,%r13 - movq 40+.Lp434x2(%rip),%rcx - sbbq %rcx,%r14 - - sbbq $0,%rax - - movq .Lp434x2(%rip),%rdi - andq %rax,%rdi - movq 8+.Lp434x2(%rip),%rsi - andq %rax,%rsi - movq 16+.Lp434x2(%rip),%rcx - andq %rax,%rcx - - addq %rdi,%r8 - movq %r8,0(%rdx) - adcq %rsi,%r9 - movq %r9,8(%rdx) - adcq %rsi,%r10 - movq %r10,16(%rdx) - adcq %rcx,%r11 - movq %r11,24(%rdx) - - setc %cl - movq 24+.Lp434x2(%rip),%r8 - andq %rax,%r8 - movq 32+.Lp434x2(%rip),%r9 - andq %rax,%r9 - movq 40+.Lp434x2(%rip),%r10 - andq %rax,%r10 - btq $0,%rcx - - adcq %r8,%r12 - movq %r12,32(%rdx) - adcq %r9,%r13 - movq %r13,40(%rdx) - adcq %r10,%r14 - movq %r14,48(%rdx) - - popq %r14 -.cfi_adjust_cfa_offset -8 - popq %r13 -.cfi_adjust_cfa_offset -8 - popq %r12 -.cfi_adjust_cfa_offset -8 - .byte 0xf3,0xc3 -.cfi_endproc - -.globl sike_fpsub_asm -.hidden sike_fpsub_asm -.type sike_fpsub_asm,@function -sike_fpsub_asm: -.cfi_startproc - pushq %r12 -.cfi_adjust_cfa_offset 8 -.cfi_offset r12, -16 - pushq %r13 -.cfi_adjust_cfa_offset 8 -.cfi_offset r13, -24 - pushq %r14 -.cfi_adjust_cfa_offset 8 -.cfi_offset r14, -32 - - xorq %rax,%rax - - movq 0(%rdi),%r8 - subq 0(%rsi),%r8 - movq 8(%rdi),%r9 - sbbq 8(%rsi),%r9 - movq 16(%rdi),%r10 - sbbq 16(%rsi),%r10 - movq 24(%rdi),%r11 - sbbq 24(%rsi),%r11 - movq 32(%rdi),%r12 - sbbq 32(%rsi),%r12 - movq 40(%rdi),%r13 - sbbq 40(%rsi),%r13 - movq 48(%rdi),%r14 - sbbq 48(%rsi),%r14 - - sbbq $0x0,%rax - - movq .Lp434x2(%rip),%rdi - andq %rax,%rdi - movq 8+.Lp434x2(%rip),%rsi - andq %rax,%rsi - movq 16+.Lp434x2(%rip),%rcx - andq %rax,%rcx - - addq %rdi,%r8 - movq %r8,0(%rdx) - adcq %rsi,%r9 - movq %r9,8(%rdx) - adcq %rsi,%r10 - movq %r10,16(%rdx) - adcq %rcx,%r11 - movq %r11,24(%rdx) - - setc %cl - movq 24+.Lp434x2(%rip),%r8 - andq %rax,%r8 - movq 32+.Lp434x2(%rip),%r9 - andq %rax,%r9 - movq 40+.Lp434x2(%rip),%r10 - andq %rax,%r10 - btq $0x0,%rcx - - adcq %r8,%r12 - adcq %r9,%r13 - adcq %r10,%r14 - movq %r12,32(%rdx) - movq %r13,40(%rdx) - movq %r14,48(%rdx) - - popq %r14 -.cfi_adjust_cfa_offset -8 - popq %r13 -.cfi_adjust_cfa_offset -8 - popq %r12 -.cfi_adjust_cfa_offset -8 - .byte 0xf3,0xc3 -.cfi_endproc -.globl sike_mpadd_asm -.hidden sike_mpadd_asm -.type sike_mpadd_asm,@function -sike_mpadd_asm: -.cfi_startproc - movq 0(%rdi),%r8; - movq 8(%rdi),%r9 - movq 16(%rdi),%r10 - movq 24(%rdi),%r11 - movq 32(%rdi),%rcx - addq 0(%rsi),%r8 - adcq 8(%rsi),%r9 - adcq 16(%rsi),%r10 - adcq 24(%rsi),%r11 - adcq 32(%rsi),%rcx - movq %r8,0(%rdx) - movq %r9,8(%rdx) - movq %r10,16(%rdx) - movq %r11,24(%rdx) - movq %rcx,32(%rdx) - - movq 40(%rdi),%r8 - movq 48(%rdi),%r9 - adcq 40(%rsi),%r8 - adcq 48(%rsi),%r9 - movq %r8,40(%rdx) - movq %r9,48(%rdx) - .byte 0xf3,0xc3 -.cfi_endproc -.globl sike_mpsubx2_asm -.hidden sike_mpsubx2_asm -.type sike_mpsubx2_asm,@function -sike_mpsubx2_asm: -.cfi_startproc - xorq %rax,%rax - - movq 0(%rdi),%r8 - movq 8(%rdi),%r9 - movq 16(%rdi),%r10 - movq 24(%rdi),%r11 - movq 32(%rdi),%rcx - subq 0(%rsi),%r8 - sbbq 8(%rsi),%r9 - sbbq 16(%rsi),%r10 - sbbq 24(%rsi),%r11 - sbbq 32(%rsi),%rcx - movq %r8,0(%rdx) - movq %r9,8(%rdx) - movq %r10,16(%rdx) - movq %r11,24(%rdx) - movq %rcx,32(%rdx) - - movq 40(%rdi),%r8 - movq 48(%rdi),%r9 - movq 56(%rdi),%r10 - movq 64(%rdi),%r11 - movq 72(%rdi),%rcx - sbbq 40(%rsi),%r8 - sbbq 48(%rsi),%r9 - sbbq 56(%rsi),%r10 - sbbq 64(%rsi),%r11 - sbbq 72(%rsi),%rcx - movq %r8,40(%rdx) - movq %r9,48(%rdx) - movq %r10,56(%rdx) - movq %r11,64(%rdx) - movq %rcx,72(%rdx) - - movq 80(%rdi),%r8 - movq 88(%rdi),%r9 - movq 96(%rdi),%r10 - movq 104(%rdi),%r11 - sbbq 80(%rsi),%r8 - sbbq 88(%rsi),%r9 - sbbq 96(%rsi),%r10 - sbbq 104(%rsi),%r11 - sbbq $0x0,%rax - movq %r8,80(%rdx) - movq %r9,88(%rdx) - movq %r10,96(%rdx) - movq %r11,104(%rdx) - .byte 0xf3,0xc3 -.cfi_endproc -.globl sike_mpdblsubx2_asm -.hidden sike_mpdblsubx2_asm -.type sike_mpdblsubx2_asm,@function -sike_mpdblsubx2_asm: -.cfi_startproc - pushq %r12 -.cfi_adjust_cfa_offset 8 -.cfi_offset r12, -16 - pushq %r13 -.cfi_adjust_cfa_offset 8 -.cfi_offset r13, -24 - - xorq %rax,%rax - - - movq 0(%rdx),%r8 - movq 8(%rdx),%r9 - movq 16(%rdx),%r10 - movq 24(%rdx),%r11 - movq 32(%rdx),%r12 - movq 40(%rdx),%r13 - movq 48(%rdx),%rcx - subq 0(%rdi),%r8 - sbbq 8(%rdi),%r9 - sbbq 16(%rdi),%r10 - sbbq 24(%rdi),%r11 - sbbq 32(%rdi),%r12 - sbbq 40(%rdi),%r13 - sbbq 48(%rdi),%rcx - adcq $0x0,%rax - - - subq 0(%rsi),%r8 - sbbq 8(%rsi),%r9 - sbbq 16(%rsi),%r10 - sbbq 24(%rsi),%r11 - sbbq 32(%rsi),%r12 - sbbq 40(%rsi),%r13 - sbbq 48(%rsi),%rcx - adcq $0x0,%rax - - - movq %r8,0(%rdx) - movq %r9,8(%rdx) - movq %r10,16(%rdx) - movq %r11,24(%rdx) - movq %r12,32(%rdx) - movq %r13,40(%rdx) - movq %rcx,48(%rdx) - - - movq 56(%rdx),%r8 - movq 64(%rdx),%r9 - movq 72(%rdx),%r10 - movq 80(%rdx),%r11 - movq 88(%rdx),%r12 - movq 96(%rdx),%r13 - movq 104(%rdx),%rcx - - subq %rax,%r8 - sbbq 56(%rdi),%r8 - sbbq 64(%rdi),%r9 - sbbq 72(%rdi),%r10 - sbbq 80(%rdi),%r11 - sbbq 88(%rdi),%r12 - sbbq 96(%rdi),%r13 - sbbq 104(%rdi),%rcx - - - subq 56(%rsi),%r8 - sbbq 64(%rsi),%r9 - sbbq 72(%rsi),%r10 - sbbq 80(%rsi),%r11 - sbbq 88(%rsi),%r12 - sbbq 96(%rsi),%r13 - sbbq 104(%rsi),%rcx - - - movq %r8,56(%rdx) - movq %r9,64(%rdx) - movq %r10,72(%rdx) - movq %r11,80(%rdx) - movq %r12,88(%rdx) - movq %r13,96(%rdx) - movq %rcx,104(%rdx) - - popq %r13 -.cfi_adjust_cfa_offset -8 - popq %r12 -.cfi_adjust_cfa_offset -8 - .byte 0xf3,0xc3 -.cfi_endproc - -.globl sike_fprdc_asm -.hidden sike_fprdc_asm -.type sike_fprdc_asm,@function -sike_fprdc_asm: -.cfi_startproc - pushq %r12 -.cfi_adjust_cfa_offset 8 -.cfi_offset r12, -16 - pushq %r13 -.cfi_adjust_cfa_offset 8 -.cfi_offset r13, -24 - pushq %r14 -.cfi_adjust_cfa_offset 8 -.cfi_offset r14, -32 - pushq %r15 -.cfi_adjust_cfa_offset 8 -.cfi_offset r15, -40 - - xorq %rax,%rax - movq 0+0(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r8,%r9 - mulxq 8+.Lp434p1(%rip),%r12,%r10 - mulxq 16+.Lp434p1(%rip),%r13,%r11 - - adoxq %r12,%r9 - adoxq %r13,%r10 - - mulxq 24+.Lp434p1(%rip),%r13,%r12 - adoxq %r13,%r11 - adoxq %rax,%r12 - - xorq %rax,%rax - movq 0+8(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r13,%rcx - adcxq %r13,%r9 - adcxq %rcx,%r10 - - mulxq 8+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r11 - adoxq %rcx,%r10 - - mulxq 16+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r12 - adoxq %rcx,%r11 - - mulxq 24+.Lp434p1(%rip),%rcx,%r13 - adcxq %rax,%r13 - adoxq %rcx,%r12 - adoxq %rax,%r13 - - xorq %rcx,%rcx - addq 24(%rdi),%r8 - adcq 32(%rdi),%r9 - adcq 40(%rdi),%r10 - adcq 48(%rdi),%r11 - adcq 56(%rdi),%r12 - adcq 64(%rdi),%r13 - adcq 72(%rdi),%rcx - movq %r8,24(%rdi) - movq %r9,32(%rdi) - movq %r10,40(%rdi) - movq %r11,48(%rdi) - movq %r12,56(%rdi) - movq %r13,64(%rdi) - movq %rcx,72(%rdi) - movq 80(%rdi),%r8 - movq 88(%rdi),%r9 - movq 96(%rdi),%r10 - movq 104(%rdi),%r11 - adcq $0x0,%r8 - adcq $0x0,%r9 - adcq $0x0,%r10 - adcq $0x0,%r11 - movq %r8,80(%rdi) - movq %r9,88(%rdi) - movq %r10,96(%rdi) - movq %r11,104(%rdi) - - xorq %rax,%rax - movq 16+0(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r8,%r9 - mulxq 8+.Lp434p1(%rip),%r12,%r10 - mulxq 16+.Lp434p1(%rip),%r13,%r11 - - adoxq %r12,%r9 - adoxq %r13,%r10 - - mulxq 24+.Lp434p1(%rip),%r13,%r12 - adoxq %r13,%r11 - adoxq %rax,%r12 - - xorq %rax,%rax - movq 16+8(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r13,%rcx - adcxq %r13,%r9 - adcxq %rcx,%r10 - - mulxq 8+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r11 - adoxq %rcx,%r10 - - mulxq 16+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r12 - adoxq %rcx,%r11 - - mulxq 24+.Lp434p1(%rip),%rcx,%r13 - adcxq %rax,%r13 - adoxq %rcx,%r12 - adoxq %rax,%r13 - - xorq %rcx,%rcx - addq 40(%rdi),%r8 - adcq 48(%rdi),%r9 - adcq 56(%rdi),%r10 - adcq 64(%rdi),%r11 - adcq 72(%rdi),%r12 - adcq 80(%rdi),%r13 - adcq 88(%rdi),%rcx - movq %r8,40(%rdi) - movq %r9,48(%rdi) - movq %r10,56(%rdi) - movq %r11,64(%rdi) - movq %r12,72(%rdi) - movq %r13,80(%rdi) - movq %rcx,88(%rdi) - movq 96(%rdi),%r8 - movq 104(%rdi),%r9 - adcq $0x0,%r8 - adcq $0x0,%r9 - movq %r8,96(%rdi) - movq %r9,104(%rdi) - - xorq %rax,%rax - movq 32+0(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r8,%r9 - mulxq 8+.Lp434p1(%rip),%r12,%r10 - mulxq 16+.Lp434p1(%rip),%r13,%r11 - - adoxq %r12,%r9 - adoxq %r13,%r10 - - mulxq 24+.Lp434p1(%rip),%r13,%r12 - adoxq %r13,%r11 - adoxq %rax,%r12 - - xorq %rax,%rax - movq 32+8(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r13,%rcx - adcxq %r13,%r9 - adcxq %rcx,%r10 - - mulxq 8+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r11 - adoxq %rcx,%r10 - - mulxq 16+.Lp434p1(%rip),%rcx,%r13 - adcxq %r13,%r12 - adoxq %rcx,%r11 - - mulxq 24+.Lp434p1(%rip),%rcx,%r13 - adcxq %rax,%r13 - adoxq %rcx,%r12 - adoxq %rax,%r13 - - xorq %rcx,%rcx - addq 56(%rdi),%r8 - adcq 64(%rdi),%r9 - adcq 72(%rdi),%r10 - adcq 80(%rdi),%r11 - adcq 88(%rdi),%r12 - adcq 96(%rdi),%r13 - adcq 104(%rdi),%rcx - movq %r8,0(%rsi) - movq %r9,8(%rsi) - movq %r10,72(%rdi) - movq %r11,80(%rdi) - movq %r12,88(%rdi) - movq %r13,96(%rdi) - movq %rcx,104(%rdi) - - xorq %rax,%rax - movq 48(%rdi),%rdx - mulxq 0+.Lp434p1(%rip),%r8,%r9 - mulxq 8+.Lp434p1(%rip),%r12,%r10 - mulxq 16+.Lp434p1(%rip),%r13,%r11 - - adoxq %r12,%r9 - adoxq %r13,%r10 - - mulxq 24+.Lp434p1(%rip),%r13,%r12 - adoxq %r13,%r11 - adoxq %rax,%r12 - - addq 72(%rdi),%r8 - adcq 80(%rdi),%r9 - adcq 88(%rdi),%r10 - adcq 96(%rdi),%r11 - adcq 104(%rdi),%r12 - movq %r8,16(%rsi) - movq %r9,24(%rsi) - movq %r10,32(%rsi) - movq %r11,40(%rsi) - movq %r12,48(%rsi) - - - popq %r15 -.cfi_adjust_cfa_offset -8 - popq %r14 -.cfi_adjust_cfa_offset -8 - popq %r13 -.cfi_adjust_cfa_offset -8 - popq %r12 -.cfi_adjust_cfa_offset -8 - .byte 0xf3,0xc3 -.cfi_endproc -.globl sike_mpmul_asm -.hidden sike_mpmul_asm -.type sike_mpmul_asm,@function -sike_mpmul_asm: -.cfi_startproc - pushq %r12 -.cfi_adjust_cfa_offset 8 -.cfi_offset r12, -16 - pushq %r13 -.cfi_adjust_cfa_offset 8 -.cfi_offset r13, -24 - pushq %r14 -.cfi_adjust_cfa_offset 8 -.cfi_offset r14, -32 - pushq %r15 -.cfi_adjust_cfa_offset 8 -.cfi_offset r15, -40 - - - movq %rdx,%rcx - xorq %rax,%rax - - - movq 0(%rdi),%r8 - movq 8(%rdi),%r9 - movq 16(%rdi),%r10 - movq 24(%rdi),%r11 - - pushq %rbx -.cfi_adjust_cfa_offset 8 -.cfi_offset rbx, -48 - pushq %rbp -.cfi_offset rbp, -56 -.cfi_adjust_cfa_offset 8 - subq $96,%rsp -.cfi_adjust_cfa_offset 96 - - addq 32(%rdi),%r8 - adcq 40(%rdi),%r9 - adcq 48(%rdi),%r10 - adcq $0x0,%r11 - sbbq $0x0,%rax - movq %r8,0(%rsp) - movq %r9,8(%rsp) - movq %r10,16(%rsp) - movq %r11,24(%rsp) - - - xorq %rbx,%rbx - movq 0(%rsi),%r12 - movq 8(%rsi),%r13 - movq 16(%rsi),%r14 - movq 24(%rsi),%r15 - addq 32(%rsi),%r12 - adcq 40(%rsi),%r13 - adcq 48(%rsi),%r14 - adcq $0x0,%r15 - sbbq $0x0,%rbx - movq %r12,32(%rsp) - movq %r13,40(%rsp) - movq %r14,48(%rsp) - movq %r15,56(%rsp) - - - andq %rax,%r12 - andq %rax,%r13 - andq %rax,%r14 - andq %rax,%r15 - - - andq %rbx,%r8 - andq %rbx,%r9 - andq %rbx,%r10 - andq %rbx,%r11 - - - addq %r12,%r8 - adcq %r13,%r9 - adcq %r14,%r10 - adcq %r15,%r11 - movq %r8,64(%rsp) - movq %r9,72(%rsp) - movq %r10,80(%rsp) - movq %r11,88(%rsp) - - - movq 0+0(%rsp),%rdx - mulxq 32+0(%rsp),%r9,%r8 - movq %r9,0+0(%rsp) - mulxq 32+8(%rsp),%r10,%r9 - xorq %rax,%rax - adoxq %r10,%r8 - mulxq 32+16(%rsp),%r11,%r10 - adoxq %r11,%r9 - mulxq 32+24(%rsp),%r12,%r11 - adoxq %r12,%r10 - - movq 0+8(%rsp),%rdx - mulxq 32+0(%rsp),%r12,%r13 - adoxq %rax,%r11 - xorq %rax,%rax - mulxq 32+8(%rsp),%r15,%r14 - adoxq %r8,%r12 - movq %r12,0+8(%rsp) - adcxq %r15,%r13 - mulxq 32+16(%rsp),%rbx,%r15 - adcxq %rbx,%r14 - adoxq %r9,%r13 - mulxq 32+24(%rsp),%rbp,%rbx - adcxq %rbp,%r15 - adcxq %rax,%rbx - adoxq %r10,%r14 - - movq 0+16(%rsp),%rdx - mulxq 32+0(%rsp),%r8,%r9 - adoxq %r11,%r15 - adoxq %rax,%rbx - xorq %rax,%rax - mulxq 32+8(%rsp),%r11,%r10 - adoxq %r13,%r8 - movq %r8,0+16(%rsp) - adcxq %r11,%r9 - mulxq 32+16(%rsp),%r12,%r11 - adcxq %r12,%r10 - adoxq %r14,%r9 - mulxq 32+24(%rsp),%rbp,%r12 - adcxq %rbp,%r11 - adcxq %rax,%r12 - - adoxq %r15,%r10 - adoxq %rbx,%r11 - adoxq %rax,%r12 - - movq 0+24(%rsp),%rdx - mulxq 32+0(%rsp),%r8,%r13 - xorq %rax,%rax - mulxq 32+8(%rsp),%r15,%r14 - adcxq %r15,%r13 - adoxq %r8,%r9 - mulxq 32+16(%rsp),%rbx,%r15 - adcxq %rbx,%r14 - adoxq %r13,%r10 - mulxq 32+24(%rsp),%rbp,%rbx - adcxq %rbp,%r15 - adcxq %rax,%rbx - adoxq %r14,%r11 - adoxq %r15,%r12 - adoxq %rax,%rbx - movq %r9,0+24(%rsp) - movq %r10,0+32(%rsp) - movq %r11,0+40(%rsp) - movq %r12,0+48(%rsp) - movq %rbx,0+56(%rsp) - - - - movq 0+0(%rdi),%rdx - mulxq 0+0(%rsi),%r9,%r8 - movq %r9,0+0(%rcx) - mulxq 0+8(%rsi),%r10,%r9 - xorq %rax,%rax - adoxq %r10,%r8 - mulxq 0+16(%rsi),%r11,%r10 - adoxq %r11,%r9 - mulxq 0+24(%rsi),%r12,%r11 - adoxq %r12,%r10 - - movq 0+8(%rdi),%rdx - mulxq 0+0(%rsi),%r12,%r13 - adoxq %rax,%r11 - xorq %rax,%rax - mulxq 0+8(%rsi),%r15,%r14 - adoxq %r8,%r12 - movq %r12,0+8(%rcx) - adcxq %r15,%r13 - mulxq 0+16(%rsi),%rbx,%r15 - adcxq %rbx,%r14 - adoxq %r9,%r13 - mulxq 0+24(%rsi),%rbp,%rbx - adcxq %rbp,%r15 - adcxq %rax,%rbx - adoxq %r10,%r14 - - movq 0+16(%rdi),%rdx - mulxq 0+0(%rsi),%r8,%r9 - adoxq %r11,%r15 - adoxq %rax,%rbx - xorq %rax,%rax - mulxq 0+8(%rsi),%r11,%r10 - adoxq %r13,%r8 - movq %r8,0+16(%rcx) - adcxq %r11,%r9 - mulxq 0+16(%rsi),%r12,%r11 - adcxq %r12,%r10 - adoxq %r14,%r9 - mulxq 0+24(%rsi),%rbp,%r12 - adcxq %rbp,%r11 - adcxq %rax,%r12 - - adoxq %r15,%r10 - adoxq %rbx,%r11 - adoxq %rax,%r12 - - movq 0+24(%rdi),%rdx - mulxq 0+0(%rsi),%r8,%r13 - xorq %rax,%rax - mulxq 0+8(%rsi),%r15,%r14 - adcxq %r15,%r13 - adoxq %r8,%r9 - mulxq 0+16(%rsi),%rbx,%r15 - adcxq %rbx,%r14 - adoxq %r13,%r10 - mulxq 0+24(%rsi),%rbp,%rbx - adcxq %rbp,%r15 - adcxq %rax,%rbx - adoxq %r14,%r11 - adoxq %r15,%r12 - adoxq %rax,%rbx - movq %r9,0+24(%rcx) - movq %r10,0+32(%rcx) - movq %r11,0+40(%rcx) - movq %r12,0+48(%rcx) - movq %rbx,0+56(%rcx) - - - - movq 32+0(%rdi),%rdx - mulxq 32+0(%rsi),%r9,%r8 - movq %r9,64+0(%rcx) - mulxq 32+8(%rsi),%r10,%r9 - xorq %rax,%rax - adoxq %r10,%r8 - mulxq 32+16(%rsi),%r11,%r10 - adoxq %r11,%r9 - - movq 32+8(%rdi),%rdx - mulxq 32+0(%rsi),%r12,%r11 - adoxq %rax,%r10 - xorq %rax,%rax - - mulxq 32+8(%rsi),%r14,%r13 - adoxq %r8,%r12 - movq %r12,64+8(%rcx) - adcxq %r14,%r11 - - mulxq 32+16(%rsi),%r8,%r14 - adoxq %r9,%r11 - adcxq %r8,%r13 - adcxq %rax,%r14 - adoxq %r10,%r13 - - movq 32+16(%rdi),%rdx - mulxq 32+0(%rsi),%r8,%r9 - adoxq %rax,%r14 - xorq %rax,%rax - - mulxq 32+8(%rsi),%r10,%r12 - adoxq %r11,%r8 - movq %r8,64+16(%rcx) - adcxq %r13,%r9 - - mulxq 32+16(%rsi),%r11,%r8 - adcxq %r14,%r12 - adcxq %rax,%r8 - adoxq %r10,%r9 - adoxq %r12,%r11 - adoxq %rax,%r8 - movq %r9,64+24(%rcx) - movq %r11,64+32(%rcx) - movq %r8,64+40(%rcx) - - - - - movq 64(%rsp),%r8 - movq 72(%rsp),%r9 - movq 80(%rsp),%r10 - movq 88(%rsp),%r11 - - movq 32(%rsp),%rax - addq %rax,%r8 - movq 40(%rsp),%rax - adcq %rax,%r9 - movq 48(%rsp),%rax - adcq %rax,%r10 - movq 56(%rsp),%rax - adcq %rax,%r11 - - - movq 0(%rsp),%r12 - movq 8(%rsp),%r13 - movq 16(%rsp),%r14 - movq 24(%rsp),%r15 - subq 0(%rcx),%r12 - sbbq 8(%rcx),%r13 - sbbq 16(%rcx),%r14 - sbbq 24(%rcx),%r15 - sbbq 32(%rcx),%r8 - sbbq 40(%rcx),%r9 - sbbq 48(%rcx),%r10 - sbbq 56(%rcx),%r11 - - - subq 64(%rcx),%r12 - sbbq 72(%rcx),%r13 - sbbq 80(%rcx),%r14 - sbbq 88(%rcx),%r15 - sbbq 96(%rcx),%r8 - sbbq 104(%rcx),%r9 - sbbq $0x0,%r10 - sbbq $0x0,%r11 - - addq 32(%rcx),%r12 - movq %r12,32(%rcx) - adcq 40(%rcx),%r13 - movq %r13,40(%rcx) - adcq 48(%rcx),%r14 - movq %r14,48(%rcx) - adcq 56(%rcx),%r15 - movq %r15,56(%rcx) - adcq 64(%rcx),%r8 - movq %r8,64(%rcx) - adcq 72(%rcx),%r9 - movq %r9,72(%rcx) - adcq 80(%rcx),%r10 - movq %r10,80(%rcx) - adcq 88(%rcx),%r11 - movq %r11,88(%rcx) - movq 96(%rcx),%r12 - adcq $0x0,%r12 - movq %r12,96(%rcx) - movq 104(%rcx),%r13 - adcq $0x0,%r13 - movq %r13,104(%rcx) - - addq $96,%rsp -.cfi_adjust_cfa_offset -96 - popq %rbp -.cfi_adjust_cfa_offset -8 -.cfi_same_value rbp - popq %rbx -.cfi_adjust_cfa_offset -8 -.cfi_same_value rbx - - - popq %r15 -.cfi_adjust_cfa_offset -8 - popq %r14 -.cfi_adjust_cfa_offset -8 - popq %r13 -.cfi_adjust_cfa_offset -8 - popq %r12 -.cfi_adjust_cfa_offset -8 - .byte 0xf3,0xc3 -.cfi_endproc diff --git a/src/kem/sike/p434/fp_generic.c b/src/kem/sike/p434/fp_generic.c deleted file mode 100644 index 020d452c..00000000 --- a/src/kem/sike/p434/fp_generic.c +++ /dev/null @@ -1,207 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: portable modular arithmetic for P503 -*********************************************************************************************/ -#include "common/utils.h" - -#include "utils.h" -#include "fpx.h" - -#ifndef PQC_NOASM -void sike_fprdc_asm(const felm_t ma, felm_t mc); -void sike_mpmul_asm(const felm_t a, const felm_t b, dfelm_t c); -void sike_fpadd_asm(const felm_t a, const felm_t b, felm_t c); -void sike_fpsub_asm(const felm_t a, const felm_t b, felm_t c); -#endif - -// Global constants -extern const struct params_t params; - -// Digit multiplication, digit * digit -> 2-digit result -static void digit_x_digit(const crypto_word_t a, const crypto_word_t b, crypto_word_t* c) -{ - crypto_word_t al, ah, bl, bh, temp; - crypto_word_t albl, albh, ahbl, ahbh, res1, res2, res3, carry; - crypto_word_t mask_low = (crypto_word_t)(-1) >> (sizeof(crypto_word_t)*4); - crypto_word_t mask_high = (crypto_word_t)(-1) << (sizeof(crypto_word_t)*4); - - al = a & mask_low; // Low part - ah = a >> (sizeof(crypto_word_t) * 4); // High part - bl = b & mask_low; - bh = b >> (sizeof(crypto_word_t) * 4); - - albl = al*bl; - albh = al*bh; - ahbl = ah*bl; - ahbh = ah*bh; - c[0] = albl & mask_low; // C00 - - res1 = albl >> (sizeof(crypto_word_t) * 4); - res2 = ahbl & mask_low; - res3 = albh & mask_low; - temp = res1 + res2 + res3; - carry = temp >> (sizeof(crypto_word_t) * 4); - c[0] ^= temp << (sizeof(crypto_word_t) * 4); // C01 - - res1 = ahbl >> (sizeof(crypto_word_t) * 4); - res2 = albh >> (sizeof(crypto_word_t) * 4); - res3 = ahbh & mask_low; - temp = res1 + res2 + res3 + carry; - c[1] = temp & mask_low; // C10 - carry = temp & mask_high; - c[1] ^= (ahbh & mask_high) + carry; // C11 -} - -// Modular addition, c = a+b mod p434. -// Inputs: a, b in [0, 2*p434-1] -// Output: c in [0, 2*p434-1] -void sike_fpadd(const felm_t a, const felm_t b, felm_t c) -{ -#ifdef PQC_ASM - sike_fpadd_asm(a,b,c); -#else - unsigned int i, carry = 0; - crypto_word_t mask; - - for (i = 0; i < NWORDS_FIELD; i++) { - ADDC(carry, a[i], b[i], carry, c[i]); - } - - carry = 0; - for (i = 0; i < NWORDS_FIELD; i++) { - SUBC(carry, c[i], params.prime_x2[i], carry, c[i]); - } - mask = 0 - (crypto_word_t)carry; - - carry = 0; - for (i = 0; i < NWORDS_FIELD; i++) { - ADDC(carry, c[i], params.prime_x2[i] & mask, carry, c[i]); - } -#endif -} - -void sike_fpsub(const felm_t a, const felm_t b, felm_t c) -{ // Modular subtraction, c = a-b mod p434. - // Inputs: a, b in [0, 2*p434-1] - // Output: c in [0, 2*p434-1] -#ifdef PQC_ASM - sike_fpsub_asm(a,b,c); -#else - unsigned int i, borrow = 0; - crypto_word_t mask; - - for (i = 0; i < NWORDS_FIELD; i++) { - SUBC(borrow, a[i], b[i], borrow, c[i]); - } - mask = 0 - (crypto_word_t)borrow; - - borrow = 0; - for (i = 0; i < NWORDS_FIELD; i++) { - ADDC(borrow, c[i], params.prime_x2[i] & mask, borrow, c[i]); - } -#endif -} - -// Multiprecision comba multiply, c = a*b, where lng(a) = lng(b) = NWORDS_FIELD. -void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c) -{ -#ifdef PQC_ASM - if (get_cpu_caps()->bmi2 && get_cpu_caps()->adx) { - sike_mpmul_asm(a,b,c); - return; - } -#endif - - unsigned int i, j; - crypto_word_t t = 0, u = 0, v = 0, UV[2]; - unsigned int carry = 0; - - for (i = 0; i < NWORDS_FIELD; i++) { - for (j = 0; j <= i; j++) { - MUL(a[j], b[i-j], UV+1, UV[0]); - ADDC(0, UV[0], v, carry, v); - ADDC(carry, UV[1], u, carry, u); - t += carry; - } - c[i] = v; - v = u; - u = t; - t = 0; - } - - for (i = NWORDS_FIELD; i < 2*NWORDS_FIELD-1; i++) { - for (j = i-NWORDS_FIELD+1; j < NWORDS_FIELD; j++) { - MUL(a[j], b[i-j], UV+1, UV[0]); - ADDC(0, UV[0], v, carry, v); - ADDC(carry, UV[1], u, carry, u); - t += carry; - } - c[i] = v; - v = u; - u = t; - t = 0; - } - c[2*NWORDS_FIELD-1] = v; -} - -// Efficient Montgomery reduction using comba and exploiting the special form of the prime p434. -// mc = ma*R^-1 mod p434x2, where R = 2^448. -// If ma < 2^448*p434, the output mc is in the range [0, 2*p434-1]. -// ma is assumed to be in Montgomery representation. -void sike_fprdc(const felm_t ma, felm_t mc) -{ -#ifdef PQC_ASM - if (get_cpu_caps()->bmi2 && get_cpu_caps()->adx) { - sike_fprdc_asm(ma, mc); - return; - } -#endif - unsigned int i, j, carry, count = ZERO_WORDS; - crypto_word_t UV[2], t = 0, u = 0, v = 0; - - for (i = 0; i < NWORDS_FIELD; i++) { - mc[i] = 0; - } - - for (i = 0; i < NWORDS_FIELD; i++) { - for (j = 0; j < i; j++) { - if (j < (i-ZERO_WORDS+1)) { - MUL(mc[j], params.prime_p1[i-j], UV+1, UV[0]); - ADDC(0, UV[0], v, carry, v); - ADDC(carry, UV[1], u, carry, u); - t += carry; - } - } - ADDC(0, v, ma[i], carry, v); - ADDC(carry, u, 0, carry, u); - t += carry; - mc[i] = v; - v = u; - u = t; - t = 0; - } - - for (i = NWORDS_FIELD; i < 2*NWORDS_FIELD-1; i++) { - if (count > 0) { - count -= 1; - } - for (j = i-NWORDS_FIELD+1; j < NWORDS_FIELD; j++) { - if (j < (NWORDS_FIELD-count)) { - MUL(mc[j], params.prime_p1[i-j], UV+1, UV[0]); - ADDC(0, UV[0], v, carry, v); - ADDC(carry, UV[1], u, carry, u); - t += carry; - } - } - ADDC(0, v, ma[i], carry, v); - ADDC(carry, u, 0, carry, u); - t += carry; - mc[i-NWORDS_FIELD] = v; - v = u; - u = t; - t = 0; - } - ADDC(0, v, ma[2*NWORDS_FIELD-1], carry, v); - mc[NWORDS_FIELD-1] = v; -} diff --git a/src/kem/sike/p434/fpx.c b/src/kem/sike/p434/fpx.c deleted file mode 100644 index 4eac8be4..00000000 --- a/src/kem/sike/p434/fpx.c +++ /dev/null @@ -1,282 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: core functions over GF(p) and GF(p^2) -*********************************************************************************************/ -#include -#include "utils.h" -#include "fpx.h" - -extern const struct params_t params; - -// Multiprecision squaring, c = a^2 mod p. -static void fpsqr_mont(const felm_t ma, felm_t mc) -{ - dfelm_t temp = {0}; - sike_mpmul(ma, ma, temp); - sike_fprdc(temp, mc); -} - -// Chain to compute a^(p-3)/4 using Montgomery arithmetic. -static void fpinv_chain_mont(felm_t a) -{ - unsigned int i, j; - felm_t t[31], tt; - - // Precomputed table - fpsqr_mont(a, tt); - sike_fpmul_mont(a, tt, t[0]); - for (i = 0; i <= 29; i++) sike_fpmul_mont(t[i], tt, t[i+1]); - - sike_fpcopy(a, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[5], tt, tt); - for (i = 0; i < 10; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[14], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[3], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[23], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[13], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[24], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[7], tt, tt); - for (i = 0; i < 8; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[12], tt, tt); - for (i = 0; i < 8; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[30], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[1], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[30], tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[21], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[2], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[19], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[1], tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[24], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[26], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[16], tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[10], tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[6], tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[0], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[20], tt, tt); - for (i = 0; i < 8; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[9], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[25], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[30], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[26], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(a, tt, tt); - for (i = 0; i < 7; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[28], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[6], tt, tt); - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[10], tt, tt); - for (i = 0; i < 9; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[22], tt, tt); - for (j = 0; j < 35; j++) { - for (i = 0; i < 6; i++) fpsqr_mont(tt, tt); - sike_fpmul_mont(t[30], tt, tt); - } - sike_fpcopy(tt, a); -} - -// Field inversion using Montgomery arithmetic, a = a^(-1)*R mod p. -static void fpinv_mont(felm_t a) -{ - felm_t tt = {0}; - sike_fpcopy(a, tt); - fpinv_chain_mont(tt); - fpsqr_mont(tt, tt); - fpsqr_mont(tt, tt); - sike_fpmul_mont(a, tt, a); -} - -// Multiprecision addition, c = a+b, where lng(a) = lng(b) = nwords. Returns the carry bit. -#ifndef PQC_ASM -inline static unsigned int mp_add(const felm_t a, const felm_t b, felm_t c, const unsigned int nwords) { - uint8_t carry = 0; - for (size_t i = 0; i < nwords; i++) { - ADDC(carry, a[i], b[i], carry, c[i]); - } - return carry; -} - -// Multiprecision subtraction, c = a-b, where lng(a) = lng(b) = nwords. Returns the borrow bit. -inline static unsigned int mp_sub(const felm_t a, const felm_t b, felm_t c, const unsigned int nwords) { - uint32_t borrow = 0; - for (size_t i = 0; i < nwords; i++) { - SUBC(borrow, a[i], b[i], borrow, c[i]); - } - return borrow; -} -#endif - -// Multiprecision addition, c = a+b. -inline static void mp_addfast(const felm_t a, const felm_t b, felm_t c) -{ -#ifdef PQC_ASM - sike_mpadd_asm(a, b, c); -#else - mp_add(a, b, c, NWORDS_FIELD); -#endif -} - -// Multiprecision subtraction, c = a-b, where lng(a) = lng(b) = 2*NWORDS_FIELD. -// If c < 0 then returns mask = 0xFF..F, else mask = 0x00..0 -inline static crypto_word_t mp_subfast(const dfelm_t a, const dfelm_t b, dfelm_t c) { -#ifdef PQC_ASM - return sike_mpsubx2_asm(a, b, c); -#else - return (0 - (crypto_word_t)mp_sub(a, b, c, 2*NWORDS_FIELD)); -#endif -} - -// Multiprecision subtraction, c = c-a-b, where lng(a) = lng(b) = 2*NWORDS_FIELD. -// Inputs should be s.t. c > a and c > b -inline static void mp_dblsubfast(const dfelm_t a, const dfelm_t b, dfelm_t c) { -#ifdef PQC_ASM - sike_mpdblsubx2_asm(a, b, c); -#else - mp_sub(c, a, c, 2*NWORDS_FIELD); - mp_sub(c, b, c, 2*NWORDS_FIELD); -#endif -} - -// Copy a field element, c = a. -void sike_fpcopy(const felm_t a, felm_t c) { - for (size_t i = 0; i < NWORDS_FIELD; i++) { - c[i] = a[i]; - } -} - -// Field multiplication using Montgomery arithmetic, c = a*b*R^-1 mod prime, where R=2^768 -void sike_fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc) -{ - dfelm_t temp = {0}; - sike_mpmul(ma, mb, temp); - sike_fprdc(temp, mc); -} - -// Conversion from Montgomery representation to standard representation, -// c = ma*R^(-1) mod p = a mod p, where ma in [0, p-1]. -void sike_from_mont(const felm_t ma, felm_t c) -{ - felm_t one = {0}; - one[0] = 1; - - sike_fpmul_mont(ma, one, c); - sike_fpcorrection(c); -} - -// GF(p^2) squaring using Montgomery arithmetic, c = a^2 in GF(p^2). -// Inputs: a = a0+a1*i, where a0, a1 are in [0, 2*p-1] -// Output: c = c0+c1*i, where c0, c1 are in [0, 2*p-1] -void sike_fp2sqr_mont(const f2elm_t a, f2elm_t c) { - felm_t t1 = {0}, t2 = {0}, t3 = {0}; - - mp_addfast(a->c0, a->c1, t1); // t1 = a0+a1 - sike_fpsub(a->c0, a->c1, t2); // t2 = a0-a1 - mp_addfast(a->c0, a->c0, t3); // t3 = 2a0 - sike_fpmul_mont(t1, t2, c->c0); // c0 = (a0+a1)(a0-a1) - sike_fpmul_mont(t3, a->c1, c->c1); // c1 = 2a0*a1 -} - -// Modular negation, a = -a mod p503. -// Input/output: a in [0, 2*p503-1] -void sike_fpneg(felm_t a) { - uint32_t borrow = 0; - for (size_t i = 0; i < NWORDS_FIELD; i++) { - SUBC(borrow, params.prime_x2[i], a[i], borrow, a[i]); - } -} - -// Modular division by two, c = a/2 mod p503. -// Input : a in [0, 2*p503-1] -// Output: c in [0, 2*p503-1] -void sike_fpdiv2(const felm_t a, felm_t c) { - uint32_t carry = 0; - crypto_word_t mask; - - mask = 0 - (crypto_word_t)(a[0] & 1); // If a is odd compute a+p503 - for (size_t i = 0; i < NWORDS_FIELD; i++) { - ADDC(carry, a[i], params.prime[i] & mask, carry, c[i]); - } - - // Multiprecision right shift by one. - for (size_t i = 0; i < NWORDS_FIELD-1; i++) { - c[i] = (c[i] >> 1) ^ (c[i+1] << (RADIX - 1)); - } - c[NWORDS_FIELD-1] >>= 1; -} - -// Modular correction to reduce field element a in [0, 2*p503-1] to [0, p503-1]. -void sike_fpcorrection(felm_t a) { - uint32_t borrow = 0; - crypto_word_t mask; - - for (size_t i = 0; i < NWORDS_FIELD; i++) { - SUBC(borrow, a[i], params.prime[i], borrow, a[i]); - } - mask = 0 - (crypto_word_t)borrow; - - borrow = 0; - for (size_t i = 0; i < NWORDS_FIELD; i++) { - ADDC(borrow, a[i], params.prime[i] & mask, borrow, a[i]); - } -} - -// GF(p^2) multiplication using Montgomery arithmetic, c = a*b in GF(p^2). -// Inputs: a = a0+a1*i and b = b0+b1*i, where a0, a1, b0, b1 are in [0, 2*p-1] -// Output: c = c0+c1*i, where c0, c1 are in [0, 2*p-1] -void sike_fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c) { - felm_t t1 = {0}, t2 = {0}; - dfelm_t tt1, tt2, tt3; - crypto_word_t mask; - - mp_addfast(a->c0, a->c1, t1); // t1 = a0+a1 - mp_addfast(b->c0, b->c1, t2); // t2 = b0+b1 - sike_mpmul(a->c0, b->c0, tt1); // tt1 = a0*b0 - sike_mpmul(a->c1, b->c1, tt2); // tt2 = a1*b1 - sike_mpmul(t1, t2, tt3); // tt3 = (a0+a1)*(b0+b1) - mp_dblsubfast(tt1, tt2, tt3); // tt3 = (a0+a1)*(b0+b1) - a0*b0 - a1*b1 - mask = mp_subfast(tt1, tt2, tt1); // tt1 = a0*b0 - a1*b1. If tt1 < 0 then mask = 0xFF..F, else if tt1 >= 0 then mask = 0x00..0 - - for (size_t i = 0; i < NWORDS_FIELD; i++) { - t1[i] = params.prime[i] & mask; - } - - sike_fprdc(tt3, c->c1); // c[1] = (a0+a1)*(b0+b1) - a0*b0 - a1*b1 - mp_addfast(&tt1[NWORDS_FIELD], t1, &tt1[NWORDS_FIELD]); - sike_fprdc(tt1, c->c0); // c[0] = a0*b0 - a1*b1 -} - -// GF(p^2) inversion using Montgomery arithmetic, a = (a0-i*a1)/(a0^2+a1^2). -void sike_fp2inv_mont(f2elm_t a) { - f2elm_t t1 = {0}; - - fpsqr_mont(a->c0, t1->c0); // t10 = a0^2 - fpsqr_mont(a->c1, t1->c1); // t11 = a1^2 - sike_fpadd(t1->c0, t1->c1, t1->c0); // t10 = a0^2+a1^2 - fpinv_mont(t1->c0); // t10 = (a0^2+a1^2)^-1 - sike_fpneg(a->c1); // a = a0-i*a1 - sike_fpmul_mont(a->c0, t1->c0, a->c0); - sike_fpmul_mont(a->c1, t1->c0, a->c1); // a = (a0-i*a1)*(a0^2+a1^2)^-1 -} diff --git a/src/kem/sike/p434/fpx.h b/src/kem/sike/p434/fpx.h deleted file mode 100644 index fc51d0e9..00000000 --- a/src/kem/sike/p434/fpx.h +++ /dev/null @@ -1,110 +0,0 @@ -#ifndef FPX_H_ -#define FPX_H_ - -#include "utils.h" - -#if defined(__cplusplus) -extern "C" { -#endif - -// Modular addition, c = a+b mod p. -void sike_fpadd(const felm_t a, const felm_t b, felm_t c); -// Modular subtraction, c = a-b mod p. -void sike_fpsub(const felm_t a, const felm_t b, felm_t c); -// Modular division by two, c = a/2 mod p. -void sike_fpdiv2(const felm_t a, felm_t c); -// Modular correction to reduce field element a in [0, 2*p-1] to [0, p-1]. -void sike_fpcorrection(felm_t a); -// Multiprecision multiply, c = a*b, where lng(a) = lng(b) = nwords. -void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c); -// 443-bit Montgomery reduction, c = a mod p -void sike_fprdc(const dfelm_t a, felm_t c); -// Double 2x443-bit multiprecision subtraction, c = c-a-b -void sike_mpdblsubx2_asm(const felm_t a, const felm_t b, felm_t c); -// Multiprecision subtraction, c = a-b -crypto_word_t sike_mpsubx2_asm(const dfelm_t a, const dfelm_t b, dfelm_t c); -// 443-bit multiprecision addition, c = a+b -void sike_mpadd_asm(const felm_t a, const felm_t b, felm_t c); -// Modular negation, a = -a mod p. -void sike_fpneg(felm_t a); -// Copy of a field element, c = a -void sike_fpcopy(const felm_t a, felm_t c); -// Copy a field element, c = a. -void sike_fpzero(felm_t a); -// Conversion from Montgomery representation to standard representation, -// c = ma*R^(-1) mod p = a mod p, where ma in [0, p-1]. -void sike_from_mont(const felm_t ma, felm_t c); -// Field multiplication using Montgomery arithmetic, c = a*b*R^-1 mod p443, where R=2^768 -void sike_fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc); -// GF(p443^2) multiplication using Montgomery arithmetic, c = a*b in GF(p443^2) -void sike_fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c); -// GF(p443^2) inversion using Montgomery arithmetic, a = (a0-i*a1)/(a0^2+a1^2) -void sike_fp2inv_mont(f2elm_t a); -// GF(p^2) squaring using Montgomery arithmetic, c = a^2 in GF(p^2). -void sike_fp2sqr_mont(const f2elm_t a, f2elm_t c); -// Modular correction, a = a in GF(p^2). -void sike_fp2correction(f2elm_t a); - -#if defined(__cplusplus) -} // extern C -#endif - -// GF(p^2) addition, c = a+b in GF(p^2). -#define sike_fp2add(a, b, c) \ -do { \ - sike_fpadd(a->c0, b->c0, c->c0); \ - sike_fpadd(a->c1, b->c1, c->c1); \ -} while(0) - -// GF(p^2) subtraction, c = a-b in GF(p^2). -#define sike_fp2sub(a,b,c) \ -do { \ - sike_fpsub(a->c0, b->c0, c->c0); \ - sike_fpsub(a->c1, b->c1, c->c1); \ -} while(0) - -// Copy a GF(p^2) element, c = a. -#define sike_fp2copy(a, c) \ -do { \ - sike_fpcopy(a->c0, c->c0); \ - sike_fpcopy(a->c1, c->c1); \ -} while(0) - -// GF(p^2) negation, a = -a in GF(p^2). -#define sike_fp2neg(a) \ -do { \ - sike_fpneg(a->c0); \ - sike_fpneg(a->c1); \ -} while(0) - -// GF(p^2) division by two, c = a/2 in GF(p^2). -#define sike_fp2div2(a, c) \ -do { \ - sike_fpdiv2(a->c0, c->c0); \ - sike_fpdiv2(a->c1, c->c1); \ -} while(0) - -// Modular correction, a = a in GF(p^2). -#define sike_fp2correction(a) \ -do { \ - sike_fpcorrection(a->c0); \ - sike_fpcorrection(a->c1); \ -} while(0) - -// Conversion of a GF(p^2) element to Montgomery representation, -// mc_i = a_i*R^2*R^(-1) = a_i*R in GF(p^2). -#define sike_to_fp2mont(a, mc) \ -do { \ - sike_fpmul_mont(a->c0, params.mont_R2, mc->c0); \ - sike_fpmul_mont(a->c1, params.mont_R2, mc->c1); \ -} while(0) - -// Conversion of a GF(p^2) element from Montgomery representation to standard representation, -// c_i = ma_i*R^(-1) = a_i in GF(p^2). -#define sike_from_fp2mont(ma, c) \ -do { \ - sike_from_mont(ma->c0, c->c0); \ - sike_from_mont(ma->c1, c->c1); \ -} while(0) - -#endif // FPX_H_ diff --git a/src/kem/sike/p434/isogeny.c b/src/kem/sike/p434/isogeny.c deleted file mode 100644 index acf10518..00000000 --- a/src/kem/sike/p434/isogeny.c +++ /dev/null @@ -1,262 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: elliptic curve and isogeny functions -*********************************************************************************************/ -#include -#include -#include "utils.h" -#include "isogeny.h" -#include "fpx.h" - -static void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24) -{ // Doubling of a Montgomery point in projective coordinates (X:Z). - // Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C. - // Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2). - f2elm_t t0 = {0}, t1 = {0}; - - sike_fp2sub(P->X, P->Z, t0); // t0 = X1-Z1 - sike_fp2add(P->X, P->Z, t1); // t1 = X1+Z1 - sike_fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2 - sike_fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2 - sike_fp2mul_mont(C24, t0, Q->Z); // Z2 = C24*(X1-Z1)^2 - sike_fp2mul_mont(t1, Q->Z, Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2 - sike_fp2sub(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2 - sike_fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] - sike_fp2add(Q->Z, t0, Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2 - sike_fp2mul_mont(Q->Z, t1, Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2] -} - -void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24, size_t e) -{ // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings. - // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C. - // Output: projective Montgomery x-coordinates Q <- (2^e)*P. - - memmove(Q, P, sizeof(*P)); - for (size_t i = 0; i < e; i++) { - xDBL(Q, Q, A24plus, C24); - } -} - -void get_4_isog(const point_proj_t P, f2elm_t A24plus, f2elm_t C24, f2elm_t* coeff) -{ // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4. - // Input: projective point of order four P = (X4:Z4). - // Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients - // that are used to evaluate the isogeny at a point in eval_4_isog(). - - sike_fp2sub(P->X, P->Z, coeff[1]); // coeff[1] = X4-Z4 - sike_fp2add(P->X, P->Z, coeff[2]); // coeff[2] = X4+Z4 - sike_fp2sqr_mont(P->Z, coeff[0]); // coeff[0] = Z4^2 - sike_fp2add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 2*Z4^2 - sike_fp2sqr_mont(coeff[0], C24); // C24 = 4*Z4^4 - sike_fp2add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 4*Z4^2 - sike_fp2sqr_mont(P->X, A24plus); // A24plus = X4^2 - sike_fp2add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2 - sike_fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4 -} - -void eval_4_isog(point_proj_t P, f2elm_t* coeff) -{ // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined - // by the 3 coefficients in coeff (computed in the function get_4_isog()). - // Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z). - // Output: the projective point P = phi(P) = (X:Z) in the codomain. - f2elm_t t0 = {0}, t1 = {0}; - - sike_fp2add(P->X, P->Z, t0); // t0 = X+Z - sike_fp2sub(P->X, P->Z, t1); // t1 = X-Z - sike_fp2mul_mont(t0, coeff[1], P->X); // X = (X+Z)*coeff[1] - sike_fp2mul_mont(t1, coeff[2], P->Z); // Z = (X-Z)*coeff[2] - sike_fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z) - sike_fp2mul_mont(t0, coeff[0], t0); // t0 = coeff[0]*(X+Z)*(X-Z) - sike_fp2add(P->X, P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1] - sike_fp2sub(P->X, P->Z, P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1] - sike_fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 - sike_fp2sqr_mont(P->Z, P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - sike_fp2add(t1, t0, P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 - sike_fp2sub(P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z) - sike_fp2mul_mont(P->X, t1, P->X); // Xfinal - sike_fp2mul_mont(P->Z, t0, P->Z); // Zfinal -} - - -void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus) -{ // Tripling of a Montgomery point in projective coordinates (X:Z). - // Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. - // Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3). - f2elm_t t0, t1, t2, t3, t4, t5, t6; - - sike_fp2sub(P->X, P->Z, t0); // t0 = X-Z - sike_fp2sqr_mont(t0, t2); // t2 = (X-Z)^2 - sike_fp2add(P->X, P->Z, t1); // t1 = X+Z - sike_fp2sqr_mont(t1, t3); // t3 = (X+Z)^2 - sike_fp2add(t0, t1, t4); // t4 = 2*X - sike_fp2sub(t1, t0, t0); // t0 = 2*Z - sike_fp2sqr_mont(t4, t1); // t1 = 4*X^2 - sike_fp2sub(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2 - sike_fp2sub(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2 - sike_fp2mul_mont(t3, A24plus, t5); // t5 = A24plus*(X+Z)^2 - sike_fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^3 - sike_fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2 - sike_fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^3 - sike_fp2sub(t2, t3, t3); // t3 = A24minus*(X-Z)^3 - coeff*(X+Z)^3 - sike_fp2sub(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2 - sike_fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] - sike_fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^3 - coeff*(X+Z)^3 - sike_fp2sqr_mont(t2, t2); // t2 = t2^2 - sike_fp2mul_mont(t4, t2, Q->X); // X3 = 2*X*t2 - sike_fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^3 - A24plus*(X+Z)^3 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] - sike_fp2sqr_mont(t1, t1); // t1 = t1^2 - sike_fp2mul_mont(t0, t1, Q->Z); // Z3 = 2*Z*t1 -} - -void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus, size_t e) -{ // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings. - // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. - // Output: projective Montgomery x-coordinates Q <- (3^e)*P. - memmove(Q, P, sizeof(*P)); - for (size_t i = 0; i < e; i++) { - xTPL(Q, Q, A24minus, A24plus); - } -} - -void get_3_isog(const point_proj_t P, f2elm_t A24minus, f2elm_t A24plus, f2elm_t* coeff) -{ // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3. - // Input: projective point of order three P = (X3:Z3). - // Output: the 3-isogenous Montgomery curve with projective coefficient A/C. - f2elm_t t0 = {0}, t1 = {0}, t2 = {0}, t3 = {0}, t4 = {0}; - - sike_fp2sub(P->X, P->Z, coeff[0]); // coeff0 = X-Z - sike_fp2sqr_mont(coeff[0], t0); // t0 = (X-Z)^2 - sike_fp2add(P->X, P->Z, coeff[1]); // coeff1 = X+Z - sike_fp2sqr_mont(coeff[1], t1); // t1 = (X+Z)^2 - sike_fp2add(t0, t1, t2); // t2 = (X+Z)^2 + (X-Z)^2 - sike_fp2add(coeff[0], coeff[1], t3); // t3 = 2*X - sike_fp2sqr_mont(t3, t3); // t3 = 4*X^2 - sike_fp2sub(t3, t2, t3); // t3 = 4*X^2 - (X+Z)^2 - (X-Z)^2 - sike_fp2add(t1, t3, t2); // t2 = 4*X^2 - (X-Z)^2 - sike_fp2add(t3, t0, t3); // t3 = 4*X^2 - (X+Z)^2 - sike_fp2add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2 - sike_fp2add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2) - sike_fp2add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 - sike_fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] - sike_fp2add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2 - sike_fp2add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2) - sike_fp2add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2 - sike_fp2mul_mont(t3, t4, t4); // t4 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - sike_fp2sub(t4, A24minus, t0); // t0 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] - sike_fp2add(A24minus, t0, A24plus); // A24plus = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 -} - - -void eval_3_isog(point_proj_t Q, f2elm_t* coeff) -{ // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and - // a point P with 2 coefficients in coeff (computed in the function get_3_isog()). - // Inputs: projective points P = (X3:Z3) and Q = (X:Z). - // Output: the projective point Q <- phi(Q) = (X3:Z3). - f2elm_t t0, t1, t2; - - sike_fp2add(Q->X, Q->Z, t0); // t0 = X+Z - sike_fp2sub(Q->X, Q->Z, t1); // t1 = X-Z - sike_fp2mul_mont(t0, coeff[0], t0); // t0 = coeff0*(X+Z) - sike_fp2mul_mont(t1, coeff[1], t1); // t1 = coeff1*(X-Z) - sike_fp2add(t0, t1, t2); // t2 = coeff0*(X+Z) + coeff1*(X-Z) - sike_fp2sub(t1, t0, t0); // t0 = coeff1*(X-Z) - coeff0*(X+Z) - sike_fp2sqr_mont(t2, t2); // t2 = [coeff0*(X+Z) + coeff1*(X-Z)]^2 - sike_fp2sqr_mont(t0, t0); // t0 = [coeff1*(X-Z) - coeff0*(X+Z)]^2 - sike_fp2mul_mont(Q->X, t2, Q->X); // X3final = X*[coeff0*(X+Z) + coeff1*(X-Z)]^2 - sike_fp2mul_mont(Q->Z, t0, Q->Z); // Z3final = Z*[coeff1*(X-Z) - coeff0*(X+Z)]^2 -} - - -void inv_3_way(f2elm_t z1, f2elm_t z2, f2elm_t z3) -{ // 3-way simultaneous inversion - // Input: z1,z2,z3 - // Output: 1/z1,1/z2,1/z3 (override inputs). - f2elm_t t0, t1, t2, t3; - - sike_fp2mul_mont(z1, z2, t0); // t0 = z1*z2 - sike_fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3 - sike_fp2inv_mont(t1); // t1 = 1/(z1*z2*z3) - sike_fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2) - sike_fp2mul_mont(t2, z2, t3); // t3 = 1/z1 - sike_fp2mul_mont(t2, z1, z2); // z2 = 1/z2 - sike_fp2mul_mont(t0, t1, z3); // z3 = 1/z3 - sike_fp2copy(t3, z1); // z1 = 1/z1 -} - - -void get_A(const f2elm_t xP, const f2elm_t xQ, const f2elm_t xR, f2elm_t A) -{ // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A. - // Input: the x-coordinates xP, xQ, and xR of the points P, Q and R. - // Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x. - f2elm_t t0 = F2ELM_INIT, t1 = F2ELM_INIT, one = F2ELM_INIT; - - extern const struct params_t params; - sike_fpcopy(params.mont_one, one->c0); - sike_fp2add(xP, xQ, t1); // t1 = xP+xQ - sike_fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ - sike_fp2mul_mont(xR, t1, A); // A = xR*t1 - sike_fp2add(t0, A, A); // A = A+t0 - sike_fp2mul_mont(t0, xR, t0); // t0 = t0*xR - sike_fp2sub(A, one, A); // A = A-1 - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2add(t1, xR, t1); // t1 = t1+xR - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2sqr_mont(A, A); // A = A^2 - sike_fp2inv_mont(t0); // t0 = 1/t0 - sike_fp2mul_mont(A, t0, A); // A = A*t0 - sike_fp2sub(A, t1, A); // Afinal = A-t1 -} - - -void j_inv(const f2elm_t A, const f2elm_t C, f2elm_t jinv) -{ // Computes the j-invariant of a Montgomery curve with projective constant. - // Input: A,C in GF(p^2). - // Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x. - f2elm_t t0 = F2ELM_INIT, t1 = F2ELM_INIT; - - sike_fp2sqr_mont(A, jinv); // jinv = A^2 - sike_fp2sqr_mont(C, t1); // t1 = C^2 - sike_fp2add(t1, t1, t0); // t0 = t1+t1 - sike_fp2sub(jinv, t0, t0); // t0 = jinv-t0 - sike_fp2sub(t0, t1, t0); // t0 = t0-t1 - sike_fp2sub(t0, t1, jinv); // jinv = t0-t1 - sike_fp2sqr_mont(t1, t1); // t1 = t1^2 - sike_fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1 - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2sqr_mont(t0, t1); // t1 = t0^2 - sike_fp2mul_mont(t0, t1, t0); // t0 = t0*t1 - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2add(t0, t0, t0); // t0 = t0+t0 - sike_fp2inv_mont(jinv); // jinv = 1/jinv - sike_fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv -} - - -void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t xPQ, const f2elm_t A24) -{ // Simultaneous doubling and differential addition. - // Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4. - // Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP. - f2elm_t t0 = F2ELM_INIT, t1 = F2ELM_INIT, t2 = F2ELM_INIT; - - sike_fp2add(P->X, P->Z, t0); // t0 = XP+ZP - sike_fp2sub(P->X, P->Z, t1); // t1 = XP-ZP - sike_fp2sqr_mont(t0, P->X); // XP = (XP+ZP)^2 - sike_fp2sub(Q->X, Q->Z, t2); // t2 = XQ-ZQ - sike_fp2correction(t2); - sike_fp2add(Q->X, Q->Z, Q->X); // XQ = XQ+ZQ - sike_fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ) - sike_fp2sqr_mont(t1, P->Z); // ZP = (XP-ZP)^2 - sike_fp2mul_mont(t1, Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ) - sike_fp2sub(P->X, P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2 - sike_fp2mul_mont(P->X, P->Z, P->X); // XP = (XP+ZP)^2*(XP-ZP)^2 - sike_fp2mul_mont(t2, A24, Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2] - sike_fp2sub(t0, t1, Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ) - sike_fp2add(Q->X, P->Z, P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2 - sike_fp2add(t0, t1, Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ) - sike_fp2mul_mont(P->Z, t2, P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2] - sike_fp2sqr_mont(Q->Z, Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 - sike_fp2sqr_mont(Q->X, Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2 - sike_fp2mul_mont(Q->Z, xPQ, Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 -} diff --git a/src/kem/sike/p434/isogeny.h b/src/kem/sike/p434/isogeny.h deleted file mode 100644 index 460c8c66..00000000 --- a/src/kem/sike/p434/isogeny.h +++ /dev/null @@ -1,49 +0,0 @@ -#ifndef ISOGENY_H_ -#define ISOGENY_H_ - -// Computes [2^e](X:Z) on Montgomery curve with projective -// constant via e repeated doublings. -void xDBLe( - const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, - const f2elm_t C24, size_t e); -// Simultaneous doubling and differential addition. -void xDBLADD( - point_proj_t P, point_proj_t Q, const f2elm_t xPQ, - const f2elm_t A24); -// Tripling of a Montgomery point in projective coordinates (X:Z). -void xTPL( - const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, - const f2elm_t A24plus); -// Computes [3^e](X:Z) on Montgomery curve with projective constant -// via e repeated triplings. -void xTPLe( - const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, - const f2elm_t A24plus, size_t e); -// Given the x-coordinates of P, Q, and R, returns the value A -// corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A. -void get_A( - const f2elm_t xP, const f2elm_t xQ, const f2elm_t xR, f2elm_t A); -// Computes the j-invariant of a Montgomery curve with projective constant. -void j_inv( - const f2elm_t A, const f2elm_t C, f2elm_t jinv); -// Computes the corresponding 4-isogeny of a projective Montgomery -// point (X4:Z4) of order 4. -void get_4_isog( - const point_proj_t P, f2elm_t A24plus, f2elm_t C24, f2elm_t* coeff); -// Computes the corresponding 3-isogeny of a projective Montgomery -// point (X3:Z3) of order 3. -void get_3_isog( - const point_proj_t P, f2elm_t A24minus, f2elm_t A24plus, - f2elm_t* coeff); -// Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) -// of order 3 on a Montgomery curve and a point P with coefficients given in coeff. -void eval_3_isog( - point_proj_t Q, f2elm_t* coeff); -// Evaluates the isogeny at the point (X:Z) in the domain of the isogeny. -void eval_4_isog( - point_proj_t P, f2elm_t* coeff); -// 3-way simultaneous inversion -void inv_3_way( - f2elm_t z1, f2elm_t z2, f2elm_t z3); - -#endif // ISOGENY_H_ diff --git a/src/kem/sike/p434/params.c b/src/kem/sike/p434/params.c deleted file mode 100644 index b13f4c87..00000000 --- a/src/kem/sike/p434/params.c +++ /dev/null @@ -1,128 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: supersingular isogeny parameters and generation of functions for P434 -*********************************************************************************************/ - -#include "utils.h" - -// Parameters for isogeny system "SIKE" -const struct params_t params = { - .prime = { - U64_TO_WORDS(0xFFFFFFFFFFFFFFFF), U64_TO_WORDS(0xFFFFFFFFFFFFFFFF), - U64_TO_WORDS(0xFFFFFFFFFFFFFFFF), U64_TO_WORDS(0xFDC1767AE2FFFFFF), - U64_TO_WORDS(0x7BC65C783158AEA3), U64_TO_WORDS(0x6CFC5FD681C52056), - U64_TO_WORDS(0x0002341F27177344) - }, - .prime_p1 = { - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0xFDC1767AE3000000), - U64_TO_WORDS(0x7BC65C783158AEA3), U64_TO_WORDS(0x6CFC5FD681C52056), - U64_TO_WORDS(0x0002341F27177344) - }, - .prime_x2 = { - U64_TO_WORDS(0xFFFFFFFFFFFFFFFE), U64_TO_WORDS(0xFFFFFFFFFFFFFFFF), - U64_TO_WORDS(0xFFFFFFFFFFFFFFFF), U64_TO_WORDS(0xFB82ECF5C5FFFFFF), - U64_TO_WORDS(0xF78CB8F062B15D47), U64_TO_WORDS(0xD9F8BFAD038A40AC), - U64_TO_WORDS(0x0004683E4E2EE688) - }, - .A_gen = { - U64_TO_WORDS(0x05ADF455C5C345BF), U64_TO_WORDS(0x91935C5CC767AC2B), - U64_TO_WORDS(0xAFE4E879951F0257), U64_TO_WORDS(0x70E792DC89FA27B1), - U64_TO_WORDS(0xF797F526BB48C8CD), U64_TO_WORDS(0x2181DB6131AF621F), - U64_TO_WORDS(0x00000A1C08B1ECC4), // XPA0 - U64_TO_WORDS(0x74840EB87CDA7788), U64_TO_WORDS(0x2971AA0ECF9F9D0B), - U64_TO_WORDS(0xCB5732BDF41715D5), U64_TO_WORDS(0x8CD8E51F7AACFFAA), - U64_TO_WORDS(0xA7F424730D7E419F), U64_TO_WORDS(0xD671EB919A179E8C), - U64_TO_WORDS(0x0000FFA26C5A924A), // XPA1 - U64_TO_WORDS(0xFEC6E64588B7273B), U64_TO_WORDS(0xD2A626D74CBBF1C6), - U64_TO_WORDS(0xF8F58F07A78098C7), U64_TO_WORDS(0xE23941F470841B03), - U64_TO_WORDS(0x1B63EDA2045538DD), U64_TO_WORDS(0x735CFEB0FFD49215), - U64_TO_WORDS(0x0001C4CB77542876), // XQA0 - U64_TO_WORDS(0xADB0F733C17FFDD6), U64_TO_WORDS(0x6AFFBD037DA0A050), - U64_TO_WORDS(0x680EC43DB144E02F), U64_TO_WORDS(0x1E2E5D5FF524E374), - U64_TO_WORDS(0xE2DDA115260E2995), U64_TO_WORDS(0xA6E4B552E2EDE508), - U64_TO_WORDS(0x00018ECCDDF4B53E), // XQA1 - U64_TO_WORDS(0x01BA4DB518CD6C7D), U64_TO_WORDS(0x2CB0251FE3CC0611), - U64_TO_WORDS(0x259B0C6949A9121B), U64_TO_WORDS(0x60E17AC16D2F82AD), - U64_TO_WORDS(0x3AA41F1CE175D92D), U64_TO_WORDS(0x413FBE6A9B9BC4F3), - U64_TO_WORDS(0x00022A81D8D55643), // XRA0 - U64_TO_WORDS(0xB8ADBC70FC82E54A), U64_TO_WORDS(0xEF9CDDB0D5FADDED), - U64_TO_WORDS(0x5820C734C80096A0), U64_TO_WORDS(0x7799994BAA96E0E4), - U64_TO_WORDS(0x044961599E379AF8), U64_TO_WORDS(0xDB2B94FBF09F27E2), - U64_TO_WORDS(0x0000B87FC716C0C6) // XRA1 - }, - .B_gen = { - U64_TO_WORDS(0x6E5497556EDD48A3), U64_TO_WORDS(0x2A61B501546F1C05), - U64_TO_WORDS(0xEB919446D049887D), U64_TO_WORDS(0x5864A4A69D450C4F), - U64_TO_WORDS(0xB883F276A6490D2B), U64_TO_WORDS(0x22CC287022D5F5B9), - U64_TO_WORDS(0x0001BED4772E551F), // XPB0 - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), // XPB1 - U64_TO_WORDS(0xFAE2A3F93D8B6B8E), U64_TO_WORDS(0x494871F51700FE1C), - U64_TO_WORDS(0xEF1A94228413C27C), U64_TO_WORDS(0x498FF4A4AF60BD62), - U64_TO_WORDS(0xB00AD2A708267E8A), U64_TO_WORDS(0xF4328294E017837F), - U64_TO_WORDS(0x000034080181D8AE), // XQB0 - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), // XQB1 - U64_TO_WORDS(0x283B34FAFEFDC8E4), U64_TO_WORDS(0x9208F44977C3E647), - U64_TO_WORDS(0x7DEAE962816F4E9A), U64_TO_WORDS(0x68A2BA8AA262EC9D), - U64_TO_WORDS(0x8176F112EA43F45B), U64_TO_WORDS(0x02106D022634F504), - U64_TO_WORDS(0x00007E8A50F02E37), // XRB0 - U64_TO_WORDS(0xB378B7C1DA22CCB1), U64_TO_WORDS(0x6D089C99AD1D9230), - U64_TO_WORDS(0xEBE15711813E2369), U64_TO_WORDS(0x2B35A68239D48A53), - U64_TO_WORDS(0x445F6FD138407C93), U64_TO_WORDS(0xBEF93B29A3F6B54B), - U64_TO_WORDS(0x000173FA910377D3) // XRB1 - }, - .mont_R2 = { - U64_TO_WORDS(0x28E55B65DCD69B30), U64_TO_WORDS(0xACEC7367768798C2), - U64_TO_WORDS(0xAB27973F8311688D), U64_TO_WORDS(0x175CC6AF8D6C7C0B), - U64_TO_WORDS(0xABCD92BF2DDE347E), U64_TO_WORDS(0x69E16A61C7686D9A), - U64_TO_WORDS(0x000025A89BCDD12A) - }, - .mont_one = { - U64_TO_WORDS(0x000000000000742C), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0xB90FF404FC000000), - U64_TO_WORDS(0xD801A4FB559FACD4), U64_TO_WORDS(0xE93254545F77410C), - U64_TO_WORDS(0x0000ECEEA7BD2EDA) - }, - .mont_six = { - U64_TO_WORDS(0x000000000002B90A), U64_TO_WORDS(0x0000000000000000), - U64_TO_WORDS(0x0000000000000000), U64_TO_WORDS(0x5ADCCB2822000000), - U64_TO_WORDS(0x187D24F39F0CAFB4), U64_TO_WORDS(0x9D353A4D394145A0), - U64_TO_WORDS(0x00012559A0403298) - }, - .A_strat = { - 0x30, 0x1C, 0x10, 0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, - 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x08, 0x04, - 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, - 0x02, 0x01, 0x01, 0x0D, 0x07, 0x04, 0x02, 0x01, 0x01, 0x02, - 0x01, 0x01, 0x03, 0x02, 0x01, 0x01, 0x01, 0x01, 0x05, 0x04, - 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01, - 0x15, 0x0C, 0x07, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, - 0x03, 0x02, 0x01, 0x01, 0x01, 0x01, 0x05, 0x03, 0x02, 0x01, - 0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01, 0x09, 0x05, 0x03, - 0x02, 0x01, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01, 0x04, - 0x02, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01 - }, - .B_strat = { - 0x42, 0x21, 0x11, 0x09, 0x05, 0x03, 0x02, 0x01, 0x01, 0x01, - 0x01, 0x02, 0x01, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x01, - 0x02, 0x01, 0x01, 0x08, 0x04, 0x02, 0x01, 0x01, 0x01, 0x02, - 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x10, - 0x08, 0x04, 0x02, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, - 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x08, 0x04, 0x02, 0x01, - 0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, - 0x01, 0x20, 0x10, 0x08, 0x04, 0x03, 0x01, 0x01, 0x01, 0x01, - 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, - 0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, 0x02, - 0x01, 0x01, 0x02, 0x01, 0x01, 0x10, 0x08, 0x04, 0x02, 0x01, - 0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, - 0x01, 0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, - 0x02, 0x01, 0x01, 0x02, 0x01, 0x01 - } -}; diff --git a/src/kem/sike/p434/sike.c b/src/kem/sike/p434/sike.c deleted file mode 100644 index 47b194e0..00000000 --- a/src/kem/sike/p434/sike.c +++ /dev/null @@ -1,505 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: supersingular isogeny key encapsulation (SIKE) protocol -*********************************************************************************************/ - -#include -#include -#include -#include -#include -#include - -#include "utils.h" -#include "isogeny.h" -#include "fpx.h" - -extern const struct params_t params; - -// SIDH_JINV_BYTESZ is a number of bytes used for encoding j-invariant. -#define SIDH_JINV_BYTESZ 110U -// SIDH_PRV_A_BITSZ is a number of bits of SIDH private key (2-isogeny) -#define SIDH_PRV_A_BITSZ 216U -// SIDH_PRV_A_BITSZ is a number of bits of SIDH private key (3-isogeny) -#define SIDH_PRV_B_BITSZ 217U -// MAX_INT_POINTS_ALICE is a number of points used in 2-isogeny tree computation -#define MAX_INT_POINTS_ALICE 7U -// MAX_INT_POINTS_ALICE is a number of points used in 3-isogeny tree computation -#define MAX_INT_POINTS_BOB 8U - -// Swap points. -// If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P -static inline void sike_fp2cswap(point_proj_t P, point_proj_t Q, const crypto_word_t option) -{ - crypto_word_t temp; - for (size_t i = 0; i < NWORDS_FIELD; i++) { - temp = option & (P->X->c0[i] ^ Q->X->c0[i]); - P->X->c0[i] = temp ^ P->X->c0[i]; - Q->X->c0[i] = temp ^ Q->X->c0[i]; - temp = option & (P->Z->c0[i] ^ Q->Z->c0[i]); - P->Z->c0[i] = temp ^ P->Z->c0[i]; - Q->Z->c0[i] = temp ^ Q->Z->c0[i]; - temp = option & (P->X->c1[i] ^ Q->X->c1[i]); - P->X->c1[i] = temp ^ P->X->c1[i]; - Q->X->c1[i] = temp ^ Q->X->c1[i]; - temp = option & (P->Z->c1[i] ^ Q->Z->c1[i]); - P->Z->c1[i] = temp ^ P->Z->c1[i]; - Q->Z->c1[i] = temp ^ Q->Z->c1[i]; - } -} - -static void ladder3Pt( - const f2elm_t xP, const f2elm_t xQ, const f2elm_t xPQ, const uint8_t* m, - int is_A, point_proj_t R, const f2elm_t A) { - point_proj_t R0 = POINT_PROJ_INIT, R2 = POINT_PROJ_INIT; - f2elm_t A24 = F2ELM_INIT; - crypto_word_t mask; - int bit, swap, prevbit = 0; - - const size_t nbits = is_A?SIDH_PRV_A_BITSZ:SIDH_PRV_B_BITSZ; - - // Initializing constant - sike_fpcopy(params.mont_one, A24[0].c0); - sike_fp2add(A24, A24, A24); - sike_fp2add(A, A24, A24); - sike_fp2div2(A24, A24); - sike_fp2div2(A24, A24); // A24 = (A+2)/4 - - // Initializing points - sike_fp2copy(xQ, R0->X); - sike_fpcopy(params.mont_one, R0->Z[0].c0); - sike_fp2copy(xPQ, R2->X); - sike_fpcopy(params.mont_one, R2->Z[0].c0); - sike_fp2copy(xP, R->X); - sike_fpcopy(params.mont_one, R->Z[0].c0); - memset(R->Z->c1, 0, sizeof(R->Z->c1)); - - // Main loop - for (size_t i = 0; i < nbits; i++) { - bit = (m[i >> 3] >> (i & 7)) & 1; - swap = bit ^ prevbit; - prevbit = bit; - mask = 0 - (crypto_word_t)swap; - - sike_fp2cswap(R, R2, mask); - xDBLADD(R0, R2, R->X, A24); - sike_fp2mul_mont(R2->X, R->Z, R2->X); - } - swap = 0 ^ prevbit; - mask = 0 - (crypto_word_t)swap; - sike_fp2cswap(R, R2, mask); -} - -// Initialization of basis points -static inline void sike_init_basis(const crypto_word_t *gen, f2elm_t XP, f2elm_t XQ, f2elm_t XR) { - sike_fpcopy(gen, XP->c0); - sike_fpcopy(gen + NWORDS_FIELD, XP->c1); - sike_fpcopy(gen + 2*NWORDS_FIELD, XQ->c0); - sike_fpcopy(gen + 3*NWORDS_FIELD, XQ->c1); - sike_fpcopy(gen + 4*NWORDS_FIELD, XR->c0); - sike_fpcopy(gen + 5*NWORDS_FIELD, XR->c1); -} - -// Conversion of GF(p^2) element from Montgomery to standard representation. -static inline void sike_fp2_encode(const f2elm_t x, uint8_t *enc) { - f2elm_t t={0}; - sike_from_fp2mont(x, t); - - // convert to bytes in little endian form - for (size_t i=0; i> (8*(i%LSZ))) & 0xFF; - enc[i+FIELD_BYTESZ] = (t[0].c1[i/LSZ] >> (8*(i%LSZ))) & 0xFF; - } -} - -// Parse byte sequence back into GF(p^2) element, and conversion to Montgomery representation. -// Elements over GF(p503) are encoded in 63 octets in little endian format -// (i.e., the least significant octet is located in the lowest memory address). -static inline void fp2_decode(const uint8_t *enc, f2elm_t t) { - memset(t[0].c0, 0, sizeof(t[0].c0)); - memset(t[0].c1, 0, sizeof(t[0].c1)); - // convert bytes in little endian form to f2elm_t - for (size_t i = 0; i < FIELD_BYTESZ; i++) { - t[0].c0[i/LSZ] |= ((crypto_word_t)enc[i+ 0]) << (8*(i%LSZ)); - t[0].c1[i/LSZ] |= ((crypto_word_t)enc[i+FIELD_BYTESZ]) << (8*(i%LSZ)); - } - sike_to_fp2mont(t, t); -} - -// Alice's ephemeral public key generation -// Input: a private key prA in the range [0, 2^250 - 1], stored in 32 bytes. -// Output: the public key pkA consisting of 3 GF(p503^2) elements encoded in 378 bytes. -static void gen_iso_A(const uint8_t* skA, uint8_t* pkA) -{ - point_proj_t R, pts[MAX_INT_POINTS_ALICE]; - point_proj_t phiP = POINT_PROJ_INIT; - point_proj_t phiQ = POINT_PROJ_INIT; - point_proj_t phiR = POINT_PROJ_INIT; - f2elm_t XPA, XQA, XRA, coeff[3] = {0}; - f2elm_t A24plus = F2ELM_INIT; - f2elm_t C24 = F2ELM_INIT; - f2elm_t A = F2ELM_INIT; - unsigned int m, index = 0, pts_index[MAX_INT_POINTS_ALICE] = {0}, npts = 0, ii = 0; - - // Initialize basis points - sike_init_basis(params.A_gen, XPA, XQA, XRA); - sike_init_basis(params.B_gen, phiP->X, phiQ->X, phiR->X); - sike_fpcopy(params.mont_one, (phiP->Z)->c0); - sike_fpcopy(params.mont_one, (phiQ->Z)->c0); - sike_fpcopy(params.mont_one, (phiR->Z)->c0); - - // Initialize constants: A24plus = A+2C, C24 = 4C, where A=6, C=1 - sike_fpcopy(params.mont_one, A24plus->c0); - sike_fp2add(A24plus, A24plus, A24plus); - sike_fp2add(A24plus, A24plus, C24); - sike_fp2add(A24plus, C24, A); - sike_fp2add(C24, C24, A24plus); - - // Retrieve kernel point - ladder3Pt(XPA, XQA, XRA, skA, 1, R, A); - - // Traverse tree - index = 0; - for (size_t row = 1; row < A_max; row++) { - while (index < A_max-row) { - sike_fp2copy(R->X, pts[npts]->X); - sike_fp2copy(R->Z, pts[npts]->Z); - pts_index[npts++] = index; - m = params.A_strat[ii++]; - xDBLe(R, R, A24plus, C24, (2*m)); - index += m; - } - get_4_isog(R, A24plus, C24, coeff); - - for (size_t i = 0; i < npts; i++) { - eval_4_isog(pts[i], coeff); - } - eval_4_isog(phiP, coeff); - eval_4_isog(phiQ, coeff); - eval_4_isog(phiR, coeff); - - sike_fp2copy(pts[npts-1]->X, R->X); - sike_fp2copy(pts[npts-1]->Z, R->Z); - index = pts_index[npts-1]; - npts -= 1; - } - - get_4_isog(R, A24plus, C24, coeff); - eval_4_isog(phiP, coeff); - eval_4_isog(phiQ, coeff); - eval_4_isog(phiR, coeff); - - inv_3_way(phiP->Z, phiQ->Z, phiR->Z); - sike_fp2mul_mont(phiP->X, phiP->Z, phiP->X); - sike_fp2mul_mont(phiQ->X, phiQ->Z, phiQ->X); - sike_fp2mul_mont(phiR->X, phiR->Z, phiR->X); - - // Format public key - sike_fp2_encode(phiP->X, pkA); - sike_fp2_encode(phiQ->X, pkA + SIDH_JINV_BYTESZ); - sike_fp2_encode(phiR->X, pkA + 2*SIDH_JINV_BYTESZ); -} - -// Bob's ephemeral key-pair generation -// It produces a private key skB and computes the public key pkB. -// The private key is an integer in the range [0, 2^Floor(Log(2,3^159)) - 1], stored in 32 bytes. -// The public key consists of 3 GF(p503^2) elements encoded in 378 bytes. -static void gen_iso_B(const uint8_t* skB, uint8_t* pkB) -{ - point_proj_t R, pts[MAX_INT_POINTS_BOB]; - point_proj_t phiP = POINT_PROJ_INIT; - point_proj_t phiQ = POINT_PROJ_INIT; - point_proj_t phiR = POINT_PROJ_INIT; - f2elm_t XPB, XQB, XRB, coeff[3] = {0}; - f2elm_t A24plus = F2ELM_INIT; - f2elm_t A24minus = F2ELM_INIT; - f2elm_t A = F2ELM_INIT; - unsigned int m, index = 0, pts_index[MAX_INT_POINTS_BOB] = {0}, npts = 0, ii = 0; - - // Initialize basis points - sike_init_basis(params.B_gen, XPB, XQB, XRB); - sike_init_basis(params.A_gen, phiP->X, phiQ->X, phiR->X); - sike_fpcopy(params.mont_one, (phiP->Z)->c0); - sike_fpcopy(params.mont_one, (phiQ->Z)->c0); - sike_fpcopy(params.mont_one, (phiR->Z)->c0); - - // Initialize constants: A24minus = A-2C, A24plus = A+2C, where A=6, C=1 - sike_fpcopy(params.mont_one, A24plus->c0); - sike_fp2add(A24plus, A24plus, A24plus); - sike_fp2add(A24plus, A24plus, A24minus); - sike_fp2add(A24plus, A24minus, A); - sike_fp2add(A24minus, A24minus, A24plus); - - // Retrieve kernel point - ladder3Pt(XPB, XQB, XRB, skB, 0, R, A); - - // Traverse tree - index = 0; - for (size_t row = 1; row < B_max; row++) { - while (index < B_max-row) { - sike_fp2copy(R->X, pts[npts]->X); - sike_fp2copy(R->Z, pts[npts]->Z); - pts_index[npts++] = index; - m = params.B_strat[ii++]; - xTPLe(R, R, A24minus, A24plus, m); - index += m; - } - get_3_isog(R, A24minus, A24plus, coeff); - - for (size_t i = 0; i < npts; i++) { - eval_3_isog(pts[i], coeff); - } - eval_3_isog(phiP, coeff); - eval_3_isog(phiQ, coeff); - eval_3_isog(phiR, coeff); - - sike_fp2copy(pts[npts-1]->X, R->X); - sike_fp2copy(pts[npts-1]->Z, R->Z); - index = pts_index[npts-1]; - npts -= 1; - } - - get_3_isog(R, A24minus, A24plus, coeff); - eval_3_isog(phiP, coeff); - eval_3_isog(phiQ, coeff); - eval_3_isog(phiR, coeff); - - inv_3_way(phiP->Z, phiQ->Z, phiR->Z); - sike_fp2mul_mont(phiP->X, phiP->Z, phiP->X); - sike_fp2mul_mont(phiQ->X, phiQ->Z, phiQ->X); - sike_fp2mul_mont(phiR->X, phiR->Z, phiR->X); - - // Format public key - sike_fp2_encode(phiP->X, pkB); - sike_fp2_encode(phiQ->X, pkB + SIDH_JINV_BYTESZ); - sike_fp2_encode(phiR->X, pkB + 2*SIDH_JINV_BYTESZ); -} - -// Alice's ephemeral shared secret computation -// It produces a shared secret key ssA using her secret key skA and Bob's public key pkB -// Inputs: Alice's skA is an integer in the range [0, 2^250 - 1], stored in 32 bytes. -// Bob's pkB consists of 3 GF(p503^2) elements encoded in 378 bytes. -// Output: a shared secret ssA that consists of one element in GF(p503^2) encoded in 126 bytes. -static void ex_iso_A(const uint8_t* skA, const uint8_t* pkB, uint8_t* ssA) -{ - point_proj_t R, pts[MAX_INT_POINTS_ALICE]; - f2elm_t coeff[3], PKB[3], jinv; - f2elm_t A24plus = F2ELM_INIT; - f2elm_t C24 = F2ELM_INIT; - f2elm_t A = F2ELM_INIT; - unsigned int m, index = 0, pts_index[MAX_INT_POINTS_ALICE], npts = 0, ii = 0; - - // Initialize images of Bob's basis - fp2_decode(pkB, PKB[0]); - fp2_decode(pkB + SIDH_JINV_BYTESZ, PKB[1]); - fp2_decode(pkB + 2*SIDH_JINV_BYTESZ, PKB[2]); - - // Initialize constants - get_A(PKB[0], PKB[1], PKB[2], A); - sike_fpadd(params.mont_one, params.mont_one, C24->c0); - sike_fp2add(A, C24, A24plus); - sike_fpadd(C24->c0, C24->c0, C24->c0); - - // Retrieve kernel point - ladder3Pt(PKB[0], PKB[1], PKB[2], skA, 1, R, A); - - // Traverse tree - index = 0; - for (size_t row = 1; row < A_max; row++) { - while (index < A_max-row) { - sike_fp2copy(R->X, pts[npts]->X); - sike_fp2copy(R->Z, pts[npts]->Z); - pts_index[npts++] = index; - m = params.A_strat[ii++]; - xDBLe(R, R, A24plus, C24, (2*m)); - index += m; - } - get_4_isog(R, A24plus, C24, coeff); - - for (size_t i = 0; i < npts; i++) { - eval_4_isog(pts[i], coeff); - } - - sike_fp2copy(pts[npts-1]->X, R->X); - sike_fp2copy(pts[npts-1]->Z, R->Z); - index = pts_index[npts-1]; - npts -= 1; - } - - get_4_isog(R, A24plus, C24, coeff); - sike_fp2add(A24plus, A24plus, A24plus); - sike_fp2sub(A24plus, C24, A24plus); - sike_fp2add(A24plus, A24plus, A24plus); - j_inv(A24plus, C24, jinv); - sike_fp2_encode(jinv, ssA); -} - -// Bob's ephemeral shared secret computation -// It produces a shared secret key ssB using his secret key skB and Alice's public key pkA -// Inputs: Bob's skB is an integer in the range [0, 2^Floor(Log(2,3^159)) - 1], stored in 32 bytes. -// Alice's pkA consists of 3 GF(p503^2) elements encoded in 378 bytes. -// Output: a shared secret ssB that consists of one element in GF(p503^2) encoded in 126 bytes. -static void ex_iso_B(const uint8_t* skB, const uint8_t* pkA, uint8_t* ssB) -{ - point_proj_t R, pts[MAX_INT_POINTS_BOB] = {0}; - f2elm_t coeff[3] = {0}, PKB[3] = {0}, jinv; - f2elm_t A24plus = F2ELM_INIT; - f2elm_t A24minus = F2ELM_INIT; - f2elm_t A = F2ELM_INIT; - unsigned int m, index = 0, pts_index[MAX_INT_POINTS_BOB] = {0}, npts = 0, ii = 0; - - // Initialize images of Alice's basis - fp2_decode(pkA, PKB[0]); - fp2_decode(pkA + SIDH_JINV_BYTESZ, PKB[1]); - fp2_decode(pkA + 2*SIDH_JINV_BYTESZ, PKB[2]); - - // Initialize constants - get_A(PKB[0], PKB[1], PKB[2], A); - sike_fpadd(params.mont_one, params.mont_one, A24minus->c0); - sike_fp2add(A, A24minus, A24plus); - sike_fp2sub(A, A24minus, A24minus); - - // Retrieve kernel point - ladder3Pt(PKB[0], PKB[1], PKB[2], skB, 0, R, A); - - // Traverse tree - index = 0; - for (size_t row = 1; row < B_max; row++) { - while (index < B_max-row) { - sike_fp2copy(R->X, pts[npts]->X); - sike_fp2copy(R->Z, pts[npts]->Z); - pts_index[npts++] = index; - m = params.B_strat[ii++]; - xTPLe(R, R, A24minus, A24plus, m); - index += m; - } - get_3_isog(R, A24minus, A24plus, coeff); - - for (size_t i = 0; i < npts; i++) { - eval_3_isog(pts[i], coeff); - } - - sike_fp2copy(pts[npts-1]->X, R->X); - sike_fp2copy(pts[npts-1]->Z, R->Z); - index = pts_index[npts-1]; - npts -= 1; - } - - get_3_isog(R, A24minus, A24plus, coeff); - sike_fp2add(A24plus, A24minus, A); - sike_fp2add(A, A, A); - sike_fp2sub(A24plus, A24minus, A24plus); - j_inv(A, A24plus, jinv); - sike_fp2_encode(jinv, ssB); -} - -int SIKE_keypair(uint8_t out_priv[SIKE_PRV_BYTESZ], - uint8_t out_pub[SIKE_PUB_BYTESZ]) { - // Calculate private key for Alice. Needs to be in range [0, 2^0xFA - 1] and < - // 253 bits - randombytes(out_priv, SIKE_MSG_BYTESZ); - randombytes(&out_priv[SIKE_MSG_BYTESZ], SIKE_PRV_BYTESZ); - out_priv[SIKE_MSG_BYTESZ+28-1] = (out_priv[SIKE_MSG_BYTESZ+28-1] & 0x01); - gen_iso_B(&out_priv[SIKE_MSG_BYTESZ], out_pub); - return 1; -} - -void SIKE_encaps(uint8_t out_shared_key[SIKE_SS_BYTESZ], - uint8_t out_ciphertext[SIKE_CT_BYTESZ], - const uint8_t pub_key[SIKE_PUB_BYTESZ]) { - // Secret buffer is reused by the function to store some ephemeral - // secret data. It's size must be maximum of 64, - // SIKE_MSG_BYTESZ and SIDH_PRV_A_BITSZ in bytes. - uint8_t secret[32]; // OZAPTF, why? - uint8_t j[SIDH_JINV_BYTESZ] = {0}; - uint8_t temp[SIKE_MSG_BYTESZ + SIKE_CT_BYTESZ]; - shake256incctx ctx; - - // Generate secret key for A - // secret key A = SHAKE256({0,1}^n || pub_key)) mod SIDH_PRV_A_BITSZ - randombytes(temp, SIKE_MSG_BYTESZ); - - shake256_inc_init(&ctx); - shake256_inc_absorb(&ctx, temp, SIKE_MSG_BYTESZ); - shake256_inc_absorb(&ctx, pub_key, SIKE_PUB_BYTESZ); - shake256_inc_finalize(&ctx); - shake256_inc_squeeze(secret, 32, &ctx); - shake256_inc_ctx_release(&ctx); - - // Generate public key for A - first part of the ciphertext - gen_iso_A(secret, out_ciphertext); - - // Generate c1: - // h = SHAKE256(j-invariant) - // c1 = h ^ m - ex_iso_A(secret, pub_key, j); - shake256(secret, sizeof secret, j, sizeof j); - - // c1 = h ^ m - uint8_t *c1 = &out_ciphertext[SIKE_PUB_BYTESZ]; - for (size_t i = 0; i < SIKE_MSG_BYTESZ; i++) { - c1[i] = temp[i] ^ secret[i]; - } - - shake256_inc_init(&ctx); - shake256_inc_absorb(&ctx, temp, SIKE_MSG_BYTESZ); - shake256_inc_absorb(&ctx, out_ciphertext, SIKE_CT_BYTESZ); - shake256_inc_finalize(&ctx); - shake256_inc_squeeze(secret, 32, &ctx); - shake256_inc_ctx_release(&ctx); - // Generate shared secret out_shared_key = SHAKE256(m||out_ciphertext) - memcpy(out_shared_key, secret, SIKE_SS_BYTESZ); -} - -void SIKE_decaps(uint8_t out_shared_key[SIKE_SS_BYTESZ], - const uint8_t ciphertext[SIKE_CT_BYTESZ], - const uint8_t pub_key[SIKE_PUB_BYTESZ], - const uint8_t priv_key[SIKE_MSG_BYTESZ + SIKE_PRV_BYTESZ]) { - // Secret buffer is reused by the function to store some ephemeral - // secret data. It's size must be maximum of 64, - // SIKE_MSG_BYTESZ and SIDH_PRV_A_BITSZ in bytes. - uint8_t secret[32]; - uint8_t j[SIDH_JINV_BYTESZ] = {0}; - uint8_t c0[SIKE_PUB_BYTESZ] = {0}; - uint8_t temp[SIKE_MSG_BYTESZ] = {0}; - shake256incctx ctx; - - // Recover m - // Let ciphertext = c0 || c1 - both have fixed sizes - // m = F(j-invariant(c0, priv_key)) ^ c1 - ex_iso_B(&priv_key[SIKE_MSG_BYTESZ], ciphertext, j); - - shake256(secret, sizeof secret, j, sizeof j); - - - const uint8_t *c1 = &ciphertext[sizeof(c0)]; - for (size_t i = 0; i < SIKE_MSG_BYTESZ; i++) { - temp[i] = c1[i] ^ secret[i]; - } - - shake256_inc_init(&ctx); - shake256_inc_absorb(&ctx, temp, SIKE_MSG_BYTESZ); - shake256_inc_absorb(&ctx, pub_key, SIKE_PUB_BYTESZ); - shake256_inc_finalize(&ctx); - shake256_inc_squeeze(secret, 32, &ctx); - shake256_inc_ctx_release(&ctx); - - // Recover c0 = public key A - gen_iso_A(secret, c0); - crypto_word_t ok = ct_uint_eq( - ct_mem_eq(c0, ciphertext, SIKE_PUB_BYTESZ), 1); - for (size_t i = 0; i < SIKE_MSG_BYTESZ; i++) { - temp[i] = ct_select_8(ok, temp[i], priv_key[i]); - } - - shake256_inc_init(&ctx); - shake256_inc_absorb(&ctx, temp, SIKE_MSG_BYTESZ); - shake256_inc_absorb(&ctx, ciphertext, SIKE_CT_BYTESZ); - shake256_inc_finalize(&ctx); - shake256_inc_squeeze(secret, 32, &ctx); - shake256_inc_ctx_release(&ctx); - - // Generate shared secret out_shared_key = SHAKE256(m||ciphertext) - memcpy(out_shared_key, secret, SIKE_SS_BYTESZ); -} diff --git a/src/kem/sike/p434/utils.h b/src/kem/sike/p434/utils.h deleted file mode 100644 index e483d00f..00000000 --- a/src/kem/sike/p434/utils.h +++ /dev/null @@ -1,214 +0,0 @@ -/******************************************************************************************** -* SIDH: an efficient supersingular isogeny cryptography library -* -* Abstract: internal header file for P434 -*********************************************************************************************/ - -#ifndef UTILS_H_ -#define UTILS_H_ - -#include -#include - -// Conversion macro from number of bits to number of bytes -#define BITS_TO_BYTES(nbits) (((nbits)+7)/8) - -// Bit size of the field -#define BITS_FIELD 434 -// Byte size of the field -#define FIELD_BYTESZ BITS_TO_BYTES(BITS_FIELD) -// Number of 64-bit words of a 224-bit element -#define NBITS_ORDER 224 -#define NWORDS64_ORDER ((NBITS_ORDER+63)/64) -// Number of elements in Alice's strategy -#define A_max 108 -// Number of elements in Bob's strategy -#define B_max 137 -// Word size size -#define RADIX sizeof(crypto_word_t)*8 -// Byte size of a limb -#define LSZ sizeof(crypto_word_t) - -#if defined(CPU_64_BIT) - typedef uint64_t crypto_word_t; - // Number of words of a 434-bit field element - #define NWORDS_FIELD 7 - // Number of "0" digits in the least significant part of p434 + 1 - #define ZERO_WORDS 3 - // U64_TO_WORDS expands |x| for a |crypto_word_t| array literal. - #define U64_TO_WORDS(x) UINT64_C(x) -#else - typedef uint32_t crypto_word_t; - // Number of words of a 434-bit field element - #define NWORDS_FIELD 14 - // Number of "0" digits in the least significant part of p434 + 1 - #define ZERO_WORDS 6 - // U64_TO_WORDS expands |x| for a |crypto_word_t| array literal. - #define U64_TO_WORDS(x) \ - (uint32_t)(UINT64_C(x) & 0xffffffff), (uint32_t)(UINT64_C(x) >> 32) -#endif - -// Extended datatype support -#if !defined(HAS_UINT128) - typedef uint64_t uint128_t[2]; -#endif - -// The following functions return 1 (TRUE) if condition is true, 0 (FALSE) otherwise -// Digit multiplication -#define MUL(multiplier, multiplicand, hi, lo) digit_x_digit((multiplier), (multiplicand), &(lo)); - -// If mask |x|==0xff.ff set |x| to 1, otherwise 0 -#define M2B(x) ((x)>>(RADIX-1)) - -// Digit addition with carry -#define ADDC(carryIn, addend1, addend2, carryOut, sumOut) \ -do { \ - crypto_word_t tempReg = (addend1) + (crypto_word_t)(carryIn); \ - (sumOut) = (addend2) + tempReg; \ - (carryOut) = M2B(ct_uint_lt(tempReg, (crypto_word_t)(carryIn)) | \ - ct_uint_lt((sumOut), tempReg)); \ -} while(0) - -// Digit subtraction with borrow -#define SUBC(borrowIn, minuend, subtrahend, borrowOut, differenceOut) \ -do { \ - crypto_word_t tempReg = (minuend) - (subtrahend); \ - crypto_word_t borrowReg = M2B(ct_uint_lt((minuend), (subtrahend))); \ - borrowReg |= ((borrowIn) & ct_uint_eq(tempReg, 0)); \ - (differenceOut) = tempReg - (crypto_word_t)(borrowIn); \ - (borrowOut) = borrowReg; \ -} while(0) - -/* Old GCC 4.9 (jessie) doesn't implement {0} initialization properly, - which violates C11 as described in 6.7.9, 21 (similarily C99, 6.7.8). - Defines below are used to work around the bug, and provide a way - to initialize f2elem_t and point_proj_t structs. - Bug has been fixed in GCC6 (debian stretch). -*/ -#define F2ELM_INIT {{ {0}, {0} }} -#define POINT_PROJ_INIT {{ F2ELM_INIT, F2ELM_INIT }} - -// Datatype for representing 434-bit field elements (448-bit max.) -// Elements over GF(p434) are encoded in 63 octets in little endian format -// (i.e., the least significant octet is located in the lowest memory address). -typedef crypto_word_t felm_t[NWORDS_FIELD]; - -// An element in F_{p^2}, is composed of two coefficients from F_p, * i.e. -// Fp2 element = c0 + c1*i in F_{p^2} -// Datatype for representing double-precision 2x434-bit field elements (448-bit max.) -// Elements (a+b*i) over GF(p434^2), where a and b are defined over GF(p434), are -// encoded as {a, b}, with a in the lowest memory portion. -typedef struct { - felm_t c0; - felm_t c1; -} fp2; - -// Our F_{p^2} element type is a pointer to the struct. -typedef fp2 f2elm_t[1]; - -// Datatype for representing double-precision 2x434-bit -// field elements in contiguous memory. -typedef crypto_word_t dfelm_t[2*NWORDS_FIELD]; - -// Constants used during SIKE computation. -struct params_t { - // Stores a prime - const crypto_word_t prime[NWORDS_FIELD]; - // Stores prime + 1 - const crypto_word_t prime_p1[NWORDS_FIELD]; - // Stores prime * 2 - const crypto_word_t prime_x2[NWORDS_FIELD]; - // Alice's generator values {XPA0 + XPA1*i, XQA0 + XQA1*i, XRA0 + XRA1*i} - // in GF(prime^2), expressed in Montgomery representation - const crypto_word_t A_gen[6*NWORDS_FIELD]; - // Bob's generator values {XPB0 + XPB1*i, XQB0 + XQB1*i, XRB0 + XRB1*i} - // in GF(prime^2), expressed in Montgomery representation - const crypto_word_t B_gen[6*NWORDS_FIELD]; - // Montgomery constant mont_R2 = (2^448)^2 mod prime - const crypto_word_t mont_R2[NWORDS_FIELD]; - // Value 'one' in Montgomery representation - const crypto_word_t mont_one[NWORDS_FIELD]; - // Value '6' in Montgomery representation - const crypto_word_t mont_six[NWORDS_FIELD]; - // Fixed parameters for isogeny tree computation - const unsigned int A_strat[A_max-1]; - const unsigned int B_strat[B_max-1]; -}; - -// Point representation in projective XZ Montgomery coordinates. -typedef struct { - f2elm_t X; - f2elm_t Z; -} point_proj; -typedef point_proj point_proj_t[1]; - -// Checks whether two words are equal. Returns 1 in case it is, -// otherwise 0. -static inline crypto_word_t ct_uint_eq(crypto_word_t x, crypto_word_t y) -{ - // if x==y then t = 0 - crypto_word_t t = x ^ y; - // if x!=y t will have first bit set - t = (t >> 1) - t; - // return MSB - 1 in case x==y, otherwise 0 - return ((~t) >> (RADIX-1)); -} -// Constant time select. -// if pick == 1 (out = in1) -// if pick == 0 (out = in2) -// else out is undefined -static inline uint8_t ct_select_8(uint8_t flag, uint8_t in1, uint8_t in2) { - uint8_t mask = ((int8_t)(flag << 7))>>7; - return (in1&mask) | (in2&(~mask)); -} - -// Constant time memcmp. Returns 1 if p==q, otherwise 0 -static inline int ct_mem_eq(const void *p, const void *q, size_t n) -{ - const uint8_t *pp = (uint8_t*)p, *qq = (uint8_t*)q; - uint8_t a = 0; - - while (n--) a |= *pp++ ^ *qq++; - return (ct_uint_eq(a, 0)); -} - -static inline crypto_word_t constant_time_msb_w(crypto_word_t a) { - return 0u - (a >> (sizeof(a) * 8 - 1)); -} - -// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. -static inline crypto_word_t ct_uint_lt(crypto_word_t x, crypto_word_t y) -{ - // Consider the two cases of the problem: - // msb(a) == msb(b): a < b iff the MSB of a - b is set. - // msb(a) != msb(b): a < b iff the MSB of b is set. - // - // If msb(a) == msb(b) then the following evaluates as: - // msb(a^((a^b)|((a-b)^a))) == - // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0) - // msb(a^a^(a-b)) == (rearranging) - // msb(a-b) (because ∀x. x^x == 0) - // - // Else, if msb(a) != msb(b) then the following evaluates as: - // msb(a^((a^b)|((a-b)^a))) == - // msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙 - // represents a value s.t. msb(𝟙) = 1) - // msb(a^𝟙) == (because ORing with 1 results in 1) - // msb(b) - // - // - // Here is an SMT-LIB verification of this formula: - // - // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32) - // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a))) - // ) - // - // (declare-fun a () (_ BitVec 32)) - // (declare-fun b () (_ BitVec 32)) - // - // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b)))) - // (check-sat) - // (get-model) - return constant_time_msb_w(x^((x^y)|((x-y)^x))); -} -#endif // UTILS_H_ diff --git a/test/katrunner/src/main.rs b/test/katrunner/src/main.rs index fb1ead2f..0199df93 100644 --- a/test/katrunner/src/main.rs +++ b/test/katrunner/src/main.rs @@ -288,7 +288,6 @@ const KATS: &'static[Register] = &[ REG_KEM!(PQC_ALG_KEM_HQCRMRS128, "round3/hqc/hqc-128/hqc-128_kat.rsp"), REG_KEM!(PQC_ALG_KEM_HQCRMRS192, "round3/hqc/hqc-192/hqc-192_kat.rsp"), REG_KEM!(PQC_ALG_KEM_HQCRMRS256, "round3/hqc/hqc-256/hqc-256_kat.rsp"), - REG_KEM!(PQC_ALG_KEM_SIKE434, "round3/sike/PQCkemKAT_374.rsp"), ]; // Main loop