diff --git a/crypto_kem/hqc-128/avx2/fft.c b/crypto_kem/hqc-128/avx2/fft.c index 476a621f..1e15f0fb 100644 --- a/crypto_kem/hqc-128/avx2/fft.c +++ b/crypto_kem/hqc-128/avx2/fft.c @@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC128_AVX2_gf_mul(beta_m_pow, f[i]); @@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -300,7 +300,7 @@ void PQCLEAN_HQC128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -329,15 +329,14 @@ void PQCLEAN_HQC128_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-128/clean/fft.c b/crypto_kem/hqc-128/clean/fft.c index 64901bec..c22e22ef 100644 --- a/crypto_kem/hqc-128/clean/fft.c +++ b/crypto_kem/hqc-128/clean/fft.c @@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,10 +134,9 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; - uint16_t n; - size_t i; + size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q0, f0 + n, 2 * n); memcpy(Q1, f1 + n, 2 * n); memcpy(R0, f0, 2 * n); @@ -187,7 +186,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 1 if (m_f == 1) { f[0] = 0; - x = 1 << m; + x = (size_t) (1 << m); for (i = 0; i < x; ++i) { f[0] ^= w[i]; } @@ -221,7 +220,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case // Step 5: Compute f0 from u and f1 from v f1[1] = 0; @@ -252,7 +251,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 2: compute f from g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -297,7 +296,7 @@ void PQCLEAN_HQC128_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); u[0] = w[0] ^ w[k]; v[0] = w[k]; for (i = 1; i < k; ++i) { @@ -396,7 +395,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -464,7 +463,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC128_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -486,7 +485,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -562,7 +561,7 @@ void PQCLEAN_HQC128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -637,15 +636,14 @@ void PQCLEAN_HQC128_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-192/avx2/fft.c b/crypto_kem/hqc-192/avx2/fft.c index 8b851ce9..ea085f5e 100644 --- a/crypto_kem/hqc-192/avx2/fft.c +++ b/crypto_kem/hqc-192/avx2/fft.c @@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC192_AVX2_gf_mul(beta_m_pow, f[i]); @@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -300,7 +300,7 @@ void PQCLEAN_HQC192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -329,15 +329,14 @@ void PQCLEAN_HQC192_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-192/clean/fft.c b/crypto_kem/hqc-192/clean/fft.c index 64226507..801d121b 100644 --- a/crypto_kem/hqc-192/clean/fft.c +++ b/crypto_kem/hqc-192/clean/fft.c @@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,10 +134,9 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; - uint16_t n; - size_t i; + size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q0, f0 + n, 2 * n); memcpy(Q1, f1 + n, 2 * n); memcpy(R0, f0, 2 * n); @@ -187,7 +186,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 1 if (m_f == 1) { f[0] = 0; - x = 1 << m; + x = (size_t) (1 << m); for (i = 0; i < x; ++i) { f[0] ^= w[i]; } @@ -221,7 +220,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case // Step 5: Compute f0 from u and f1 from v f1[1] = 0; @@ -252,7 +251,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 2: compute f from g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -297,7 +296,7 @@ void PQCLEAN_HQC192_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); u[0] = w[0] ^ w[k]; v[0] = w[k]; for (i = 1; i < k; ++i) { @@ -396,7 +395,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -464,7 +463,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC192_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -486,7 +485,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -562,7 +561,7 @@ void PQCLEAN_HQC192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -637,15 +636,14 @@ void PQCLEAN_HQC192_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-256/avx2/fft.c b/crypto_kem/hqc-256/avx2/fft.c index dc73de0f..0d73586c 100644 --- a/crypto_kem/hqc-256/avx2/fft.c +++ b/crypto_kem/hqc-256/avx2/fft.c @@ -31,7 +31,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,7 +134,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -202,7 +202,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC256_AVX2_gf_mul(beta_m_pow, f[i]); @@ -224,7 +224,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -300,7 +300,7 @@ void PQCLEAN_HQC256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -329,15 +329,14 @@ void PQCLEAN_HQC256_AVX2_fft_retrieve_bch_error_poly(uint64_t *error, const uint uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-256/clean/fft.c b/crypto_kem/hqc-256/clean/fft.c index 147f4193..bf8aaa0a 100644 --- a/crypto_kem/hqc-256/clean/fft.c +++ b/crypto_kem/hqc-256/clean/fft.c @@ -34,7 +34,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -134,10 +134,9 @@ static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uin uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0}; uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0}; - uint16_t n; - size_t i; + size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q0, f0 + n, 2 * n); memcpy(Q1, f1 + n, 2 * n); memcpy(R0, f0, 2 * n); @@ -187,7 +186,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 1 if (m_f == 1) { f[0] = 0; - x = 1 << m; + x = (size_t) (1 << m); for (i = 0; i < x; ++i) { f[0] ^= w[i]; } @@ -221,7 +220,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case // Step 5: Compute f0 from u and f1 from v f1[1] = 0; @@ -252,7 +251,7 @@ static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m // Step 2: compute f from g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -297,7 +296,7 @@ void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) * Transpose: * u[i] = w[i] + w[k+i] * v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */ - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); u[0] = w[0] ^ w[k]; v[0] = w[k]; for (i = 1; i < k; ++i) { @@ -396,7 +395,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -464,7 +463,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -486,7 +485,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -562,7 +561,7 @@ void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) { fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -637,15 +636,14 @@ void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uin uint16_t gammas[PARAM_M - 1] = {0}; uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0}; uint64_t bit; - uint16_t k; - size_t i, index; + size_t i, k, index; compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); index = PARAM_GF_MUL_ORDER; bit = 1 ^ ((uint16_t) - w[k] >> 15); error[index / 8] ^= bit << (index % 64); diff --git a/crypto_kem/hqc-rmrs-128/avx2/fft.c b/crypto_kem/hqc-rmrs-128/avx2/fft.c index e5ab65cc..72e53000 100644 --- a/crypto_kem/hqc-rmrs-128/avx2/fft.c +++ b/crypto_kem/hqc-rmrs-128/avx2/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS128_AVX2_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS128_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); diff --git a/crypto_kem/hqc-rmrs-128/clean/fft.c b/crypto_kem/hqc-rmrs-128/clean/fft.c index f89cafae..b5ea0243 100644 --- a/crypto_kem/hqc-rmrs-128/clean/fft.c +++ b/crypto_kem/hqc-rmrs-128/clean/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS128_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS128_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); diff --git a/crypto_kem/hqc-rmrs-192/avx2/fft.c b/crypto_kem/hqc-rmrs-192/avx2/fft.c index 382043e2..b1eb64b1 100644 --- a/crypto_kem/hqc-rmrs-192/avx2/fft.c +++ b/crypto_kem/hqc-rmrs-192/avx2/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS192_AVX2_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS192_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); diff --git a/crypto_kem/hqc-rmrs-192/clean/fft.c b/crypto_kem/hqc-rmrs-192/clean/fft.c index 90a7789f..b89fd834 100644 --- a/crypto_kem/hqc-rmrs-192/clean/fft.c +++ b/crypto_kem/hqc-rmrs-192/clean/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS192_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS192_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); diff --git a/crypto_kem/hqc-rmrs-256/avx2/fft.c b/crypto_kem/hqc-rmrs-256/avx2/fft.c index ab226c95..2cde4848 100644 --- a/crypto_kem/hqc-rmrs-256/avx2/fft.c +++ b/crypto_kem/hqc-rmrs-256/avx2/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS256_AVX2_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS256_AVX2_fft_retrieve_error_poly(uint8_t *error, const uint1 compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15); diff --git a/crypto_kem/hqc-rmrs-256/clean/fft.c b/crypto_kem/hqc-rmrs-256/clean/fft.c index 33e2f2ba..fe821b9e 100644 --- a/crypto_kem/hqc-rmrs-256/clean/fft.c +++ b/crypto_kem/hqc-rmrs-256/clean/fft.c @@ -30,7 +30,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 static void compute_fft_betas(uint16_t *betas) { size_t i; for (i = 0; i < PARAM_M - 1; ++i) { - betas[i] = 1 << (PARAM_M - 1 - i); + betas[i] = (uint16_t) (1 << (PARAM_M - 1 - i)); } } @@ -133,7 +133,7 @@ static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_ size_t i, n; - n = 1 << (m_f - 2); + n = (size_t) (1 << (m_f - 2)); memcpy(Q, f + 3 * n, 2 * n); memcpy(Q + n, f + 3 * n, 2 * n); memcpy(R, f, 4 * n); @@ -201,7 +201,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 2: compute g if (betas[m - 1] != 1) { beta_m_pow = 1; - x = 1 << m_f; + x = (size_t) (1 << m_f); for (i = 1; i < x; ++i) { beta_m_pow = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]); f[i] = PQCLEAN_HQCRMRS256_CLEAN_gf_mul(beta_m_pow, f[i]); @@ -223,7 +223,7 @@ static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32 // Step 5 fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas); - k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small. + k = (size_t) (1 << ((m - 1) & 0xf)); // &0xf is to let the compiler know that m-1 is small. if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant w[0] = u[0]; w[k] = u[0] ^ f1[0]; @@ -299,7 +299,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeff fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); // Step 6, 7 and error polynomial computation memcpy(w + k, v, 2 * k); @@ -334,7 +334,7 @@ void PQCLEAN_HQCRMRS256_CLEAN_fft_retrieve_error_poly(uint8_t *error, const uint compute_fft_betas(gammas); compute_subset_sums(gammas_sums, gammas, PARAM_M - 1); - k = 1 << (PARAM_M - 1); + k = (size_t) (1 << (PARAM_M - 1)); error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15); error[0] ^= 1 ^ ((uint16_t) - w[k] >> 15);