diff --git a/crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c index e25d28b4..aa69c704 100644 --- a/crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c @@ -74,16 +74,6 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) { out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; } -static void left_bit_shift(const int length, DIGIT in[]) { - - int j; - for (j = 0; j < length - 1; j++) { - in[j] <<= 1; /* logical shift does not need clearing */ - in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); - } - in[j] <<= 1; -} - static void right_bit_shift(unsigned int length, DIGIT in[]) { unsigned int j; @@ -153,17 +143,6 @@ void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; } -static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ - - DIGIT mask, rotated_bit; - int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; - mask = ((DIGIT)0x1) << msb_offset_in_digit; - rotated_bit = !!(in[0] & mask); - in[0] &= ~mask; - left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); - in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; -} - static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); @@ -173,87 +152,90 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { +/* cond swap: swaps digits A and B if swap_mask == -1 */ +static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) { + int i; DIGIT t; - for (int i = length - 1; i >= 0; i--) { - t = f[i]; - f[i] = s[i]; - s[i] = t; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + t = swap_mask & (a[i] ^ b[i]); + a[i] ^= t; + b[i] ^= t; } } -/* - * Optimized extended GCD algorithm to compute the multiplicative inverse of - * a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. - * - * H. Brunner, A. Curiger, and M. Hofstetter. 1993. - * On Computing Multiplicative Inverses in GF(2^m). - * IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. - * DOI=http://dx.doi.org/10.1109/12.238496 - * - * - * Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, - * Kim Nguyen, and Frederik Vercauteren. 2012. - * Handbook of Elliptic and Hyperelliptic Curve Cryptography, - * Second Edition (2nd ed.). Chapman & Hall/CRC. - * (Chapter 11 -- Algorithm 11.44 -- pag 223) - * - */ -int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ +/* returns -1 mask if x != 0, otherwise 0 */ +static inline int nonzero(DIGIT x) { + DIGIT t = x; + t = -t; + t >>= DIGIT_SIZE_b - 1; + return -(int)t; +} - int i; - int delta = 0; - DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; - DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? +/* returns -1 mask if x < 0 else 0 */ +static inline int negative(int x) { + uint32_t u = x; + u >>= 31; + return -(int)u; +} - DIGIT mask; - u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; - v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; +/* return f(0) as digit */ +static inline DIGIT lsb(const DIGIT *p) { + DIGIT mask = (DIGIT)1; + return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; +} - s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; +/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ +static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { + for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + f[i] = f[i] ^ (s & g[i]); + } +} - mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); - s[0] |= mask; +/* constant-time inverse, source: gcd.cr.yp.to */ +int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { + int i, loop, swap, delta = 1; + DIGIT g0_mask; - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; - if (i < 0) { - return 0; + DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 + DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in + DIGIT *v = out; // v = 0, save space + DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 + + f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; + f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); + + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + g[i] = in[i]; } - for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { - f[i] = in[i]; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + v[i] = 0; } - for (i = 1; i <= 2 * P; i++) { - if ( (f[0] & mask) == 0 ) { - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); - rotate_bit_left(u); - delta += 1; - } else { - if ( (s[0] & mask) != 0) { - PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(v, v, u); - } - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); - if ( delta == 0 ) { - gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); - gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); - rotate_bit_left(u); - delta = 1; - } else { - rotate_bit_right(u); - delta = delta - 1; - } - } + r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; + + for (loop = 0; loop < 2 * P - 1; ++loop) { + + swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 + delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap + delta++; + + gf2x_cswap(f, g, swap); + gf2x_cswap(v, r, swap); + + g0_mask = -lsb(g); + + // g = (g - g0 * f) / x + gf2x_mult_scalar_acc(g, f, g0_mask); + right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); + + // r = (r - g0 * v) / x + gf2x_mult_scalar_acc(r, v, g0_mask); + rotate_bit_right(r); + } - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { - out[i] = u[i]; - } - - return (delta == 0); + return nonzero(delta); // -1 if fail, 0 if success } void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { diff --git a/crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c index 69111b48..e7fe310c 100644 --- a/crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c @@ -74,16 +74,6 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) { out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; } -static void left_bit_shift(const int length, DIGIT in[]) { - - int j; - for (j = 0; j < length - 1; j++) { - in[j] <<= 1; /* logical shift does not need clearing */ - in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); - } - in[j] <<= 1; -} - static void right_bit_shift(unsigned int length, DIGIT in[]) { unsigned int j; @@ -94,7 +84,6 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { in[j] >>= 1; } - /* shifts by whole digits */ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { unsigned int j; @@ -151,17 +140,6 @@ void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; } -static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ - - DIGIT mask, rotated_bit; - int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; - mask = ((DIGIT)0x1) << msb_offset_in_digit; - rotated_bit = !!(in[0] & mask); - in[0] &= ~mask; - left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); - in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; -} - static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); @@ -171,87 +149,90 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { +/* cond swap: swaps digits A and B if swap_mask == -1 */ +static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) { + int i; DIGIT t; - for (int i = length - 1; i >= 0; i--) { - t = f[i]; - f[i] = s[i]; - s[i] = t; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + t = swap_mask & (a[i] ^ b[i]); + a[i] ^= t; + b[i] ^= t; } } -/* - * Optimized extended GCD algorithm to compute the multiplicative inverse of - * a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. - * - * H. Brunner, A. Curiger, and M. Hofstetter. 1993. - * On Computing Multiplicative Inverses in GF(2^m). - * IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. - * DOI=http://dx.doi.org/10.1109/12.238496 - * - * - * Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, - * Kim Nguyen, and Frederik Vercauteren. 2012. - * Handbook of Elliptic and Hyperelliptic Curve Cryptography, - * Second Edition (2nd ed.). Chapman & Hall/CRC. - * (Chapter 11 -- Algorithm 11.44 -- pag 223) - * - */ -int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ +/* returns -1 mask if x != 0, otherwise 0 */ +static inline int nonzero(DIGIT x) { + DIGIT t = x; + t = -t; + t >>= DIGIT_SIZE_b - 1; + return -(int)t; +} - int i; - int delta = 0; - DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; - DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? +/* returns -1 mask if x < 0 else 0 */ +static inline int negative(int x) { + uint32_t u = x; + u >>= 31; + return -(int)u; +} - DIGIT mask; - u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; - v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; +/* return f(0) as digit */ +static inline DIGIT lsb(const DIGIT *p) { + DIGIT mask = (DIGIT)1; + return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; +} - s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; +/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ +static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { + for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + f[i] = f[i] ^ (s & g[i]); + } +} - mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); - s[0] |= mask; +/* constant-time inverse, source: gcd.cr.yp.to */ +int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { + int i, loop, swap, delta = 1; + DIGIT g0_mask; - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; - if (i < 0) { - return 0; + DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 + DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in + DIGIT *v = out; // v = 0, save space + DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 + + f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; + f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); + + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + g[i] = in[i]; } - for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { - f[i] = in[i]; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + v[i] = 0; } - for (i = 1; i <= 2 * P; i++) { - if ( (f[0] & mask) == 0 ) { - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); - rotate_bit_left(u); - delta += 1; - } else { - if ( (s[0] & mask) != 0) { - PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(v, v, u); - } - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); - if ( delta == 0 ) { - gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); - gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); - rotate_bit_left(u); - delta = 1; - } else { - rotate_bit_right(u); - delta = delta - 1; - } - } + r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; + + for (loop = 0; loop < 2 * P - 1; ++loop) { + + swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 + delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap + delta++; + + gf2x_cswap(f, g, swap); + gf2x_cswap(v, r, swap); + + g0_mask = -lsb(g); + + // g = (g - g0 * f) / x + gf2x_mult_scalar_acc(g, f, g0_mask); + right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); + + // r = (r - g0 * v) / x + gf2x_mult_scalar_acc(r, v, g0_mask); + rotate_bit_right(r); + } - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { - out[i] = u[i]; - } - - return (delta == 0); + return nonzero(delta); // -1 if fail, 0 if success } void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { diff --git a/crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c b/crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c index d1edafda..f3a22955 100644 --- a/crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c +++ b/crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c @@ -74,16 +74,6 @@ static void gf2x_mod(DIGIT out[], const DIGIT in[]) { out[0] &= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS) - 1; } -static void left_bit_shift(const int length, DIGIT in[]) { - - int j; - for (j = 0; j < length - 1; j++) { - in[j] <<= 1; /* logical shift does not need clearing */ - in[j] |= in[j + 1] >> (DIGIT_SIZE_b - 1); - } - in[j] <<= 1; -} - static void right_bit_shift(unsigned int length, DIGIT in[]) { unsigned int j; @@ -94,7 +84,6 @@ static void right_bit_shift(unsigned int length, DIGIT in[]) { in[j] >>= 1; } - /* shifts by whole digits */ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amount) { unsigned int j; @@ -151,17 +140,6 @@ void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) { A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00; } -static void rotate_bit_left(DIGIT in[]) { /* equivalent to x * in(x) mod x^P+1 */ - - DIGIT mask, rotated_bit; - int msb_offset_in_digit = MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS - 1; - mask = ((DIGIT)0x1) << msb_offset_in_digit; - rotated_bit = !!(in[0] & mask); - in[0] &= ~mask; - left_bit_shift(NUM_DIGITS_GF2X_ELEMENT, in); - in[NUM_DIGITS_GF2X_ELEMENT - 1] |= rotated_bit; -} - static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ DIGIT rotated_bit = in[NUM_DIGITS_GF2X_ELEMENT - 1] & ((DIGIT)0x1); @@ -171,87 +149,90 @@ static void rotate_bit_right(DIGIT in[]) { /* x^{-1} * in(x) mod x^P+1 */ in[0] |= rotated_bit; } -static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) { +/* cond swap: swaps digits A and B if swap_mask == -1 */ +static void gf2x_cswap(DIGIT *a, DIGIT *b, int swap_mask) { + int i; DIGIT t; - for (int i = length - 1; i >= 0; i--) { - t = f[i]; - f[i] = s[i]; - s[i] = t; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + t = swap_mask & (a[i] ^ b[i]); + a[i] ^= t; + b[i] ^= t; } } -/* - * Optimized extended GCD algorithm to compute the multiplicative inverse of - * a non-zero element in GF(2)[x] mod x^P+1, in polyn. representation. - * - * H. Brunner, A. Curiger, and M. Hofstetter. 1993. - * On Computing Multiplicative Inverses in GF(2^m). - * IEEE Trans. Comput. 42, 8 (August 1993), 1010-1015. - * DOI=http://dx.doi.org/10.1109/12.238496 - * - * - * Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, - * Kim Nguyen, and Frederik Vercauteren. 2012. - * Handbook of Elliptic and Hyperelliptic Curve Cryptography, - * Second Edition (2nd ed.). Chapman & Hall/CRC. - * (Chapter 11 -- Algorithm 11.44 -- pag 223) - * - */ -int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */ +/* returns -1 mask if x != 0, otherwise 0 */ +static inline int nonzero(DIGIT x) { + DIGIT t = x; + t = -t; + t >>= DIGIT_SIZE_b - 1; + return -(int)t; +} - int i; - int delta = 0; - DIGIT u[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT v[NUM_DIGITS_GF2X_ELEMENT] = {0}; - DIGIT s[NUM_DIGITS_GF2X_MODULUS] = {0}; - DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // alignas(32)? +/* returns -1 mask if x < 0 else 0 */ +static inline int negative(int x) { + uint32_t u = x; + u >>= 31; + return -(int)u; +} - DIGIT mask; - u[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x1; - v[NUM_DIGITS_GF2X_ELEMENT - 1] = 0x0; +/* return f(0) as digit */ +static inline DIGIT lsb(const DIGIT *p) { + DIGIT mask = (DIGIT)1; + return p[NUM_DIGITS_GF2X_ELEMENT - 1] & mask; +} - s[NUM_DIGITS_GF2X_MODULUS - 1] = 0x1; +/* multiply poly with scalar and accumulate, expects s all-zero of all-one mask */ +static void gf2x_mult_scalar_acc(DIGIT *f, const DIGIT *g, const DIGIT s) { + for (size_t i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + f[i] = f[i] ^ (s & g[i]); + } +} - mask = (((DIGIT)0x1) << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); - s[0] |= mask; +/* constant-time inverse, source: gcd.cr.yp.to */ +int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { + int i, loop, swap, delta = 1; + DIGIT g0_mask; - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 && in[i] == 0; i--) { }; - if (i < 0) { - return 0; + DIGIT f[NUM_DIGITS_GF2X_MODULUS] = {0}; // f = x^P + 1 + DIGIT g[NUM_DIGITS_GF2X_ELEMENT]; // g = in + DIGIT *v = out; // v = 0, save space + DIGIT r[NUM_DIGITS_GF2X_ELEMENT] = {0}; // r = 1 + + f[NUM_DIGITS_GF2X_MODULUS - 1] = 1; + f[0] |= ((DIGIT)1 << MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS); + + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + g[i] = in[i]; } - for (i = NUM_DIGITS_GF2X_MODULUS - 1; i >= 0 ; i--) { - f[i] = in[i]; + for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) { + v[i] = 0; } - for (i = 1; i <= 2 * P; i++) { - if ( (f[0] & mask) == 0 ) { - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, f); - rotate_bit_left(u); - delta += 1; - } else { - if ( (s[0] & mask) != 0) { - PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS); - PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(v, v, u); - } - left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s); - if ( delta == 0 ) { - gf2x_swap(NUM_DIGITS_GF2X_MODULUS, f, s); - gf2x_swap(NUM_DIGITS_GF2X_ELEMENT, u, v); - rotate_bit_left(u); - delta = 1; - } else { - rotate_bit_right(u); - delta = delta - 1; - } - } + r[NUM_DIGITS_GF2X_ELEMENT - 1] = 1; + + for (loop = 0; loop < 2 * P - 1; ++loop) { + + swap = negative(-delta) & nonzero(lsb(g)); // swap = -1 if -delta < 0 AND g(0) != 0 + delta ^= swap & (delta ^ -delta); // cond swap delta with -delta if swap + delta++; + + gf2x_cswap(f, g, swap); + gf2x_cswap(v, r, swap); + + g0_mask = -lsb(g); + + // g = (g - g0 * f) / x + gf2x_mult_scalar_acc(g, f, g0_mask); + right_bit_shift(NUM_DIGITS_GF2X_ELEMENT, g); + + // r = (r - g0 * v) / x + gf2x_mult_scalar_acc(r, v, g0_mask); + rotate_bit_right(r); + } - for (i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0 ; i--) { - out[i] = u[i]; - } - - return (delta == 0); + return nonzero(delta); // -1 if fail, 0 if success } void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {