#include "poly.h" #include "verify.h" static uint16_t mod3(uint16_t a) { uint16_t r; int16_t t, c; r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255 r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3 t = r - 3; c = t >> 15; return (c & r) ^ (~c & t); } #define POLY_S3_FMADD(I,A,B,S) \ for ((I)=0; (I)coeffs[i] ^ b->coeffs[i]) & swap; a->coeffs[i] ^= t; b->coeffs[i] ^= t; } } static inline void poly_divx(poly *a, int s) { int i; for (i = 1; i < NTRU_N; i++) { a->coeffs[i - 1] = (unsigned char) ((s * a->coeffs[i]) | (!s * a->coeffs[i - 1])); } a->coeffs[NTRU_N - 1] = (!s * a->coeffs[NTRU_N - 1]); } static inline void poly_mulx(poly *a, int s) { int i; for (i = 1; i < NTRU_N; i++) { a->coeffs[NTRU_N - i] = (unsigned char) ((s * a->coeffs[NTRU_N - i - 1]) | (!s * a->coeffs[NTRU_N - i])); } a->coeffs[0] = (!s * a->coeffs[0]); } void PQCLEAN_NTRUHPS2048677_CLEAN_poly_S3_inv(poly *r, const poly *a) { /* Schroeppel--Orman--O'Malley--Spatscheck * "Almost Inverse" algorithm as described * by Silverman in NTRU Tech Report #14 */ // with several modifications to make it run in constant-time int i, j; uint16_t k = 0; uint16_t degf = NTRU_N - 1; uint16_t degg = NTRU_N - 1; int sign, fsign = 0, t, swap; int16_t done = 0; poly b, c, f, g; poly *temp_r = &f; /* b(X) := 1 */ for (i = 1; i < NTRU_N; i++) { b.coeffs[i] = 0; } b.coeffs[0] = 1; /* c(X) := 0 */ for (i = 0; i < NTRU_N; i++) { c.coeffs[i] = 0; } /* f(X) := a(X) */ for (i = 0; i < NTRU_N; i++) { f.coeffs[i] = a->coeffs[i]; } /* g(X) := 1 + X + X^2 + ... + X^{N-1} */ for (i = 0; i < NTRU_N; i++) { g.coeffs[i] = 1; } for (j = 0; j < 2 * (NTRU_N - 1) - 1; j++) { sign = mod3(2 * g.coeffs[0] * f.coeffs[0]); swap = (((sign & 2) >> 1) | sign) & !done & ((degf - degg) >> 15); cswappoly(&f, &g, swap); cswappoly(&b, &c, swap); t = (degf ^ degg) & (-swap); degf ^= t; degg ^= t; for (i = 0; i < NTRU_N; i++) { f.coeffs[i] = mod3(f.coeffs[i] + ((uint16_t) (sign * (!done))) * g.coeffs[i]); } for (i = 0; i < NTRU_N; i++) { b.coeffs[i] = mod3(b.coeffs[i] + ((uint16_t) (sign * (!done))) * c.coeffs[i]); } poly_divx(&f, !done); poly_mulx(&c, !done); degf -= !done; k += !done; done = 1 - (((uint16_t) - degf) >> 15); } fsign = f.coeffs[0]; k = k - NTRU_N * ((uint16_t)(NTRU_N - k - 1) >> 15); /* Return X^{N-k} * b(X) */ /* This is a k-coefficient rotation. We do this by looking at the binary representation of k, rotating for every power of 2, and performing a cmov if the respective bit is set. */ for (i = 0; i < NTRU_N; i++) { r->coeffs[i] = mod3((uint16_t) fsign * b.coeffs[i]); } for (i = 0; i < 10; i++) { for (j = 0; j < NTRU_N; j++) { temp_r->coeffs[j] = r->coeffs[(j + (1 << i)) % NTRU_N]; } PQCLEAN_NTRUHPS2048677_CLEAN_cmov((unsigned char *) & (r->coeffs), (unsigned char *) & (temp_r->coeffs), sizeof(uint16_t) * NTRU_N, k & 1); k >>= 1; } /* Reduce modulo Phi_n */ for (i = 0; i < NTRU_N; i++) { r->coeffs[i] = mod3(r->coeffs[i] + 2 * r->coeffs[NTRU_N - 1]); } }