/* * Non-physical true random number generator based on timing jitter. * * Copyright Stephan Mueller , 2014 - 2022 * * Design * ====== * * See documentation in doc/ folder. * * Interface * ========= * * See documentation in jitterentropy(3) man page. * * License: see LICENSE file in root directory * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include "jitterentropy.h" #include "jitterentropy-base.h" #include "jitterentropy-gcd.h" #include "jitterentropy-health.h" #include "jitterentropy-noise.h" #include "jitterentropy-timer.h" #include "jitterentropy-sha3.h" #define MAJVERSION 3 /* API / ABI incompatible changes, functional changes that * require consumer to be updated (as long as this number * is zero, the API is not considered stable and can * change without a bump of the major version) */ #define MINVERSION 4 /* API compatible, ABI may change, functional * enhancements only, consumer can be left unchanged if * enhancements are not considered */ #define PATCHLEVEL 1 /* API / ABI compatible, no functional changes, no * enhancements, bug fixes only */ /*************************************************************************** * Jitter RNG Static Definitions * * None of the following should be altered ***************************************************************************/ #ifdef __OPTIMIZE__ #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c." #endif /* * JENT_POWERUP_TESTLOOPCOUNT needs some loops to identify edge * systems. 100 is definitely too little. * * SP800-90B requires at least 1024 initial test cycles. */ #define JENT_POWERUP_TESTLOOPCOUNT 1024 /** * jent_version() - Return machine-usable version number of jent library * * The function returns a version number that is monotonic increasing * for newer versions. The version numbers are multiples of 100. For example, * version 1.2.3 is converted to 1020300 -- the last two digits are reserved * for future use. * * The result of this function can be used in comparing the version number * in a calling program if version-specific calls need to be make. * * @return Version number of jitterentropy library */ JENT_PRIVATE_STATIC unsigned int jent_version(void) { unsigned int version = 0; version = MAJVERSION * 1000000; version += MINVERSION * 10000; version += PATCHLEVEL * 100; return version; } /*************************************************************************** * Helper ***************************************************************************/ /* Calculate log2 of given value assuming that the value is a power of 2 */ static inline unsigned int jent_log2_simple(unsigned int val) { unsigned int idx = 0; while (val >>= 1) idx++; return idx; } /* Increase the memory size by one step */ static inline unsigned int jent_update_memsize(unsigned int flags) { unsigned int global_max = JENT_FLAGS_TO_MAX_MEMSIZE( JENT_MAX_MEMSIZE_MAX); unsigned int max; max = JENT_FLAGS_TO_MAX_MEMSIZE(flags); if (!max) { /* * The safe starting value is the amount of memory we allocated * last round. */ max = jent_log2_simple(JENT_MEMORY_SIZE); /* Adjust offset */ max = (max > JENT_MAX_MEMSIZE_OFFSET) ? max - JENT_MAX_MEMSIZE_OFFSET : 0; } else { max++; } max = (max > global_max) ? global_max : max; /* Clear out the max size */ flags &= ~JENT_MAX_MEMSIZE_MASK; /* Set the freshly calculated max size */ flags |= JENT_MAX_MEMSIZE_TO_FLAGS(max); return flags; } /*************************************************************************** * Random Number Generation ***************************************************************************/ /** * Entry function: Obtain entropy for the caller. * * This function invokes the entropy gathering logic as often to generate * as many bytes as requested by the caller. The entropy gathering logic * creates 64 bit per invocation. * * This function truncates the last 64 bit entropy value output to the exact * size specified by the caller. * * @ec [in] Reference to entropy collector * @data [out] pointer to buffer for storing random data -- buffer must * already exist * @len [in] size of the buffer, specifying also the requested number of random * in bytes * * @return number of bytes returned when request is fulfilled or an error * * The following error codes can occur: * -1 entropy_collector is NULL * -2 RCT failed * -3 APT test failed * -4 The timer cannot be initialized * -5 LAG failure */ JENT_PRIVATE_STATIC ssize_t jent_read_entropy(struct rand_data *ec, char *data, size_t len) { char *p = data; size_t orig_len = len; int ret = 0; if (NULL == ec) return -1; if (jent_notime_settick(ec)) return -4; while (len > 0) { size_t tocopy; unsigned int health_test_result; jent_random_data(ec); if ((health_test_result = jent_health_failure(ec))) { if (health_test_result & JENT_RCT_FAILURE) ret = -2; else if (health_test_result & JENT_APT_FAILURE) ret = -3; else ret = -5; goto err; } if ((DATA_SIZE_BITS / 8) < len) tocopy = (DATA_SIZE_BITS / 8); else tocopy = len; jent_read_random_block(ec, p, tocopy); len -= tocopy; p += tocopy; } /* * Enhanced backtracking support: At this point, the hash state * contains the digest of the previous Jitter RNG collection round * which is inserted there by jent_read_random_block with the SHA * update operation. At the current code location we completed * one request for a caller and we do not know how long it will * take until a new request is sent to us. To guarantee enhanced * backtracking resistance at this point (i.e. ensure that an attacker * cannot obtain information about prior random numbers we generated), * but still stirring the hash state with old data the Jitter RNG * obtains a new message digest from its state and re-inserts it. * After this operation, the Jitter RNG state is still stirred with * the old data, but an attacker who gets access to the memory after * this point cannot deduce the random numbers produced by the * Jitter RNG prior to this point. */ /* * If we use secured memory, where backtracking support may not be * needed because the state is protected in a different method, * it is permissible to drop this support. But strongly weigh the * pros and cons considering that the SHA3 operation is not that * expensive. */ #ifndef CONFIG_CRYPTO_CPU_JITTERENTROPY_SECURE_MEMORY jent_read_random_block(ec, NULL, 0); #endif err: jent_notime_unsettick(ec); return ret ? ret : (ssize_t)orig_len; } static struct rand_data *_jent_entropy_collector_alloc(unsigned int osr, unsigned int flags); /** * Entry function: Obtain entropy for the caller. * * This is a service function to jent_read_entropy() with the difference * that it automatically re-allocates the entropy collector if a health * test failure is observed. Before reallocation, a new power-on health test * is performed. The allocation of the new entropy collector automatically * increases the OSR by one. This is done based on the idea that a health * test failure indicates that the assumed entropy rate is too high. * * Note the function returns with an health test error if the OSR is * getting too large. If an error is returned by this function, the Jitter RNG * is not safe to be used on the current system. * * @ec [in] Reference to entropy collector - this is a double pointer as * The entropy collector may be freed and reallocated. * @data [out] pointer to buffer for storing random data -- buffer must * already exist * @len [in] size of the buffer, specifying also the requested number of random * in bytes * * @return see jent_read_entropy() */ JENT_PRIVATE_STATIC ssize_t jent_read_entropy_safe(struct rand_data **ec, char *data, size_t len) { char *p = data; size_t orig_len = len; ssize_t ret = 0; if (!ec) return -1; while (len > 0) { unsigned int osr, flags, max_mem_set; ret = jent_read_entropy(*ec, p, len); switch (ret) { case -1: case -4: return ret; case -2: case -3: case -5: osr = (*ec)->osr + 1; flags = (*ec)->flags; max_mem_set = (*ec)->max_mem_set; /* generic arbitrary cutoff */ if (osr > 20) return ret; /* * If the caller did not set any specific maximum value * let the Jitter RNG increase the maximum memory by * one step. */ if (!max_mem_set) flags = jent_update_memsize(flags); /* * re-allocate entropy collector with higher OSR and * memory size */ jent_entropy_collector_free(*ec); /* Perform new health test with updated OSR */ if (jent_entropy_init_ex(osr, flags)) return -1; *ec = _jent_entropy_collector_alloc(osr, flags); if (!*ec) return -1; /* Remember whether caller configured memory size */ (*ec)->max_mem_set = !!max_mem_set; break; default: len -= (size_t)ret; p += (size_t)ret; } } return (ssize_t)orig_len; } /*************************************************************************** * Initialization logic ***************************************************************************/ /* * Obtain memory size to allocate for memory access variations. * * The maximum variations we can get from the memory access is when we allocate * a bit more memory than we have as data cache. But allocating as much * memory as we have as data cache might strain the resources on the system * more than necessary. * * On a lot of systems it is not necessary to need so much memory as the * variations coming from the general Jitter RNG execution commonly provide * large amount of variations. * * Thus, the default is: * * min(JENT_MEMORY_SIZE, data cache size) * * In case the data cache size cannot be obtained, use JENT_MEMORY_SIZE. * * If the caller provides a maximum memory size, use * min(provided max memory, data cache size). */ static inline uint32_t jent_memsize(unsigned int flags) { uint32_t memsize, max_memsize; max_memsize = JENT_FLAGS_TO_MAX_MEMSIZE(flags); if (max_memsize == 0) { max_memsize = JENT_MEMORY_SIZE; } else { max_memsize = UINT32_C(1) << (max_memsize + JENT_MAX_MEMSIZE_OFFSET); } /* Allocate memory for adding variations based on memory access */ memsize = jent_cache_size_roundup(); /* Limit the memory as defined by caller */ memsize = (memsize > max_memsize) ? max_memsize : memsize; /* Set a value if none was found */ if (!memsize) memsize = JENT_MEMORY_SIZE; return memsize; } static int jent_selftest_run = 0; static struct rand_data *jent_entropy_collector_alloc_internal(unsigned int osr, unsigned int flags) { struct rand_data *entropy_collector; uint32_t memsize = 0; /* * Requesting disabling and forcing of internal timer * makes no sense. */ if ((flags & JENT_DISABLE_INTERNAL_TIMER) && (flags & JENT_FORCE_INTERNAL_TIMER)) return NULL; /* Force the self test to be run */ if (!jent_selftest_run && jent_entropy_init_ex(osr, flags)) return NULL; /* * If the initial test code concludes to force the internal timer * and the user requests it not to be used, do not allocate * the Jitter RNG instance. */ if (jent_notime_forced() && (flags & JENT_DISABLE_INTERNAL_TIMER)) return NULL; entropy_collector = jent_zalloc(sizeof(struct rand_data)); if (NULL == entropy_collector) return NULL; if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) { memsize = jent_memsize(flags); entropy_collector->mem = (unsigned char *)jent_zalloc(memsize); #ifdef JENT_RANDOM_MEMACCESS /* * Transform the size into a mask - it is assumed that size is * a power of 2. */ entropy_collector->memmask = memsize - 1; #else /* JENT_RANDOM_MEMACCESS */ entropy_collector->memblocksize = memsize / JENT_MEMORY_BLOCKS; entropy_collector->memblocks = JENT_MEMORY_BLOCKS; /* sanity check */ if (entropy_collector->memblocksize * entropy_collector->memblocks != memsize) goto err; #endif /* JENT_RANDOM_MEMACCESS */ if (entropy_collector->mem == NULL) goto err; entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS; } if (sha3_alloc(&entropy_collector->hash_state)) goto err; /* Initialize the hash state */ sha3_256_init(entropy_collector->hash_state); /* verify and set the oversampling rate */ if (osr < JENT_MIN_OSR) osr = JENT_MIN_OSR; entropy_collector->osr = osr; entropy_collector->flags = flags; if ((flags & JENT_FORCE_FIPS) || jent_fips_enabled()) entropy_collector->fips_enabled = 1; /* Initialize the APT */ jent_apt_init(entropy_collector, osr); /* Initialize the Lag Predictor Test */ jent_lag_init(entropy_collector, osr); /* Was jent_entropy_init run (establishing the common GCD)? */ if (jent_gcd_get(&entropy_collector->jent_common_timer_gcd)) { /* * It was not. This should probably be an error, but this * behavior breaks the test code. Set the gcd to a value that * won't hurt anything. */ entropy_collector->jent_common_timer_gcd = 1; } /* * Use timer-less noise source - note, OSR must be set in * entropy_collector! */ if (!(flags & JENT_DISABLE_INTERNAL_TIMER)) { if (jent_notime_enable(entropy_collector, flags)) goto err; } return entropy_collector; err: if (entropy_collector->mem != NULL) jent_zfree(entropy_collector->mem, memsize); jent_zfree(entropy_collector, sizeof(struct rand_data)); return NULL; } static struct rand_data *_jent_entropy_collector_alloc(unsigned int osr, unsigned int flags) { struct rand_data *ec = jent_entropy_collector_alloc_internal(osr, flags); if (!ec) return ec; /* fill the data pad with non-zero values */ if (jent_notime_settick(ec)) { jent_entropy_collector_free(ec); return NULL; } jent_random_data(ec); jent_notime_unsettick(ec); return ec; } JENT_PRIVATE_STATIC struct rand_data *jent_entropy_collector_alloc(unsigned int osr, unsigned int flags) { struct rand_data *ec = _jent_entropy_collector_alloc(osr, flags); /* Remember that the caller provided a maximum size flag */ if (ec) ec->max_mem_set = !!JENT_FLAGS_TO_MAX_MEMSIZE(flags); return ec; } JENT_PRIVATE_STATIC void jent_entropy_collector_free(struct rand_data *entropy_collector) { if (entropy_collector != NULL) { sha3_dealloc(entropy_collector->hash_state); jent_notime_disable(entropy_collector); if (entropy_collector->mem != NULL) { jent_zfree(entropy_collector->mem, jent_memsize(entropy_collector->flags)); entropy_collector->mem = NULL; } jent_zfree(entropy_collector, sizeof(struct rand_data)); } } int jent_time_entropy_init(unsigned int osr, unsigned int flags) { struct rand_data *ec; uint64_t *delta_history; int i, time_backwards = 0, count_stuck = 0, ret = 0; unsigned int health_test_result; delta_history = jent_gcd_init(JENT_POWERUP_TESTLOOPCOUNT); if (!delta_history) return EMEM; if (flags & JENT_FORCE_INTERNAL_TIMER) jent_notime_force(); else flags |= JENT_DISABLE_INTERNAL_TIMER; /* * If the start-up health tests (including the APT and RCT) are not * run, then the entropy source is not 90B compliant. We could test if * fips_enabled should be set using the jent_fips_enabled() function, * but this can be overridden using the JENT_FORCE_FIPS flag, which * isn't passed in yet. It is better to run the tests on the small * amount of data that we have, which should not fail unless things * are really bad. */ flags |= JENT_FORCE_FIPS; ec = jent_entropy_collector_alloc_internal(osr, flags); if (!ec) { ret = EMEM; goto out; } if (jent_notime_settick(ec)) { ret = EMEM; goto out; } /* To initialize the prior time. */ jent_measure_jitter(ec, 0, NULL); /* We could perform statistical tests here, but the problem is * that we only have a few loop counts to do testing. These * loop counts may show some slight skew leading to false positives. */ /* * We could add a check for system capabilities such as clock_getres or * check for CONFIG_X86_TSC, but it does not make much sense as the * following sanity checks verify that we have a high-resolution * timer. */ #define CLEARCACHE 100 for (i = -CLEARCACHE; i < JENT_POWERUP_TESTLOOPCOUNT; i++) { uint64_t start_time = 0, end_time = 0, delta = 0; unsigned int stuck; /* Invoke core entropy collection logic */ stuck = jent_measure_jitter(ec, 0, &delta); end_time = ec->prev_time; start_time = ec->prev_time - delta; /* test whether timer works */ if (!start_time || !end_time) { ret = ENOTIME; goto out; } /* * test whether timer is fine grained enough to provide * delta even when called shortly after each other -- this * implies that we also have a high resolution timer */ if (!delta || (end_time == start_time)) { ret = ECOARSETIME; goto out; } /* * up to here we did not modify any variable that will be * evaluated later, but we already performed some work. Thus we * already have had an impact on the caches, branch prediction, * etc. with the goal to clear it to get the worst case * measurements. */ if (i < 0) continue; if (stuck) count_stuck++; /* test whether we have an increasing timer */ if (!(end_time > start_time)) time_backwards++; /* Watch for common adjacent GCD values */ jent_gcd_add_value(delta_history, delta, i); } /* * we allow up to three times the time running backwards. * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus, * if such an operation just happens to interfere with our test, it * should not fail. The value of 3 should cover the NTP case being * performed during our test run. */ if (time_backwards > 3) { ret = ENOMONOTONIC; goto out; } /* First, did we encounter a health test failure? */ if ((health_test_result = jent_health_failure(ec))) { ret = (health_test_result & JENT_RCT_FAILURE) ? ERCT : EHEALTH; goto out; } ret = jent_gcd_analyze(delta_history, JENT_POWERUP_TESTLOOPCOUNT); if (ret) goto out; /* * If we have more than 90% stuck results, then this Jitter RNG is * likely to not work well. */ if (JENT_STUCK_INIT_THRES(JENT_POWERUP_TESTLOOPCOUNT) < count_stuck) ret = ESTUCK; out: jent_gcd_fini(delta_history, JENT_POWERUP_TESTLOOPCOUNT); if ((flags & JENT_FORCE_INTERNAL_TIMER) && ec) jent_notime_unsettick(ec); jent_entropy_collector_free(ec); return ret; } static inline int jent_entropy_init_common_pre(void) { int ret; jent_notime_block_switch(); jent_health_cb_block_switch(); if (sha3_tester()) return EHASH; ret = jent_gcd_selftest(); jent_selftest_run = 1; return ret; } static inline int jent_entropy_init_common_post(int ret) { /* Unmark the execution of the self tests if they failed. */ if (ret) jent_selftest_run = 0; return ret; } JENT_PRIVATE_STATIC int jent_entropy_init(void) { int ret = jent_entropy_init_common_pre(); if (ret) return ret; ret = jent_time_entropy_init(0, JENT_DISABLE_INTERNAL_TIMER); #ifdef JENT_CONF_ENABLE_INTERNAL_TIMER if (ret) ret = jent_time_entropy_init(0, JENT_FORCE_INTERNAL_TIMER); #endif /* JENT_CONF_ENABLE_INTERNAL_TIMER */ return jent_entropy_init_common_post(ret); } JENT_PRIVATE_STATIC int jent_entropy_init_ex(unsigned int osr, unsigned int flags) { int ret = jent_entropy_init_common_pre(); if (ret) return ret; ret = ENOTIME; /* Test without internal timer unless caller does not want it */ if (!(flags & JENT_FORCE_INTERNAL_TIMER)) ret = jent_time_entropy_init(osr, flags | JENT_DISABLE_INTERNAL_TIMER); #ifdef JENT_CONF_ENABLE_INTERNAL_TIMER /* Test with internal timer unless caller does not want it */ if (ret && !(flags & JENT_DISABLE_INTERNAL_TIMER)) ret = jent_time_entropy_init(osr, flags | JENT_FORCE_INTERNAL_TIMER); #endif /* JENT_CONF_ENABLE_INTERNAL_TIMER */ return jent_entropy_init_common_post(ret); } JENT_PRIVATE_STATIC int jent_entropy_switch_notime_impl(struct jent_notime_thread *new_thread) { return jent_notime_switch(new_thread); } JENT_PRIVATE_STATIC int jent_set_fips_failure_callback(jent_fips_failure_cb cb) { return jent_set_fips_failure_callback_internal(cb); }