/******************************************************************************************** * FrodoKEM: Learning with Errors Key Encapsulation * * Abstract: matrix arithmetic functions used by the KEM *********************************************************************************************/ #include #include #include "fips202.h" #include "api.h" #include "common.h" #include "params.h" int PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_as_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) { // Generate-and-multiply: generate matrix A (N x N) row-wise, multiply by s on the right. // Inputs: s, e (N x N_BAR) // Output: out = A*s + e (N x N_BAR) int i, j, k; int16_t a_row[4 * PARAMS_N]; for (i = 0; i < (PARAMS_N * PARAMS_NBAR); i += 2) { *((uint32_t *)&out[i]) = *((uint32_t *)&e[i]); } uint8_t seed_A_separated[2 + BYTES_SEED_A]; uint16_t *seed_A_origin = (uint16_t *)&seed_A_separated; memcpy(&seed_A_separated[2], seed_A, BYTES_SEED_A); for (i = 0; i < PARAMS_N; i += 4) { seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(i + 0); shake128((unsigned char *)(a_row + 0 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(i + 1); shake128((unsigned char *)(a_row + 1 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(i + 2); shake128((unsigned char *)(a_row + 2 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(i + 3); shake128((unsigned char *)(a_row + 3 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); for (k = 0; k < 4 * PARAMS_N; k++) { a_row[k] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(a_row[k]); } for (k = 0; k < PARAMS_NBAR; k++) { uint16_t sum[4] = {0}; for (j = 0; j < PARAMS_N; j++) { // Matrix-vector multiplication uint16_t sp = s[k * PARAMS_N + j]; sum[0] += a_row[0 * PARAMS_N + j] * sp; // Go through four lines with same s sum[1] += a_row[1 * PARAMS_N + j] * sp; sum[2] += a_row[2 * PARAMS_N + j] * sp; sum[3] += a_row[3 * PARAMS_N + j] * sp; } out[(i + 0)*PARAMS_NBAR + k] += sum[0]; out[(i + 2)*PARAMS_NBAR + k] += sum[2]; out[(i + 1)*PARAMS_NBAR + k] += sum[1]; out[(i + 3)*PARAMS_NBAR + k] += sum[3]; } } return 1; } int PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sa_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) { // Generate-and-multiply: generate matrix A (N x N) column-wise, multiply by s' on the left. // Inputs: s', e' (N_BAR x N) // Output: out = s'*A + e' (N_BAR x N) int i, j, kk; for (i = 0; i < (PARAMS_N * PARAMS_NBAR); i += 2) { *((uint32_t *)&out[i]) = *((uint32_t *)&e[i]); } int t = 0; uint16_t a_cols[4 * PARAMS_N]; int k; uint8_t seed_A_separated[2 + BYTES_SEED_A]; uint16_t *seed_A_origin = (uint16_t *)&seed_A_separated; memcpy(&seed_A_separated[2], seed_A, BYTES_SEED_A); for (kk = 0; kk < PARAMS_N; kk += 4) { seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(kk + 0); shake128((unsigned char *)(a_cols + 0 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(kk + 1); shake128((unsigned char *)(a_cols + 1 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(kk + 2); shake128((unsigned char *)(a_cols + 2 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); seed_A_origin[0] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(kk + 3); shake128((unsigned char *)(a_cols + 3 * PARAMS_N), (unsigned long long)(2 * PARAMS_N), seed_A_separated, 2 + BYTES_SEED_A); for (i = 0; i < 4 * PARAMS_N; i++) { a_cols[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(a_cols[i]); } for (i = 0; i < PARAMS_NBAR; i++) { uint16_t sum[PARAMS_N] = {0}; for (j = 0; j < 4; j++) { uint16_t sp = s[i * PARAMS_N + kk + j]; for (k = 0; k < PARAMS_N; k++) { // Matrix-vector multiplication sum[k] += sp * a_cols[(t + j) * PARAMS_N + k]; } } for (k = 0; k < PARAMS_N; k++) { out[i * PARAMS_N + k] += sum[k]; } } } return 1; }