#include "parameters.h" #include "repetition.h" #include #include #include /** * @file repetition.c * @brief Implementation of repetition codes */ static inline int32_t popcount(uint64_t n); /** * @brief Encoding each bit in the message m using the repetition code * * * @param[out] em Pointer to an array that is the code word * @param[in] m Pointer to an array that is the message */ void PQCLEAN_HQC256_CLEAN_repetition_code_encode(uint64_t *em, const uint64_t *m) { uint64_t bit, idx_r, idx2; size_t pos_r; pos_r = 0; for (size_t i = 0; i < VEC_N1_SIZE_64; i++) { for (size_t j = 0; j < 64 && pos_r < PARAM_N1N2; j++) { bit = -((m[i] >> j) & 1); idx_r = (pos_r & 0x3f); idx2 = 41 - idx_r; idx2 &= (uint64_t) (-((int64_t)idx2) >> 63); em[(pos_r >> 6) + 0] ^= (bit & 0xFFFFFFFFFFFFFFFFUL) << idx_r; em[(pos_r >> 6) + 1] ^= (bit & 0xFFFFFFFFFFFFFFFFUL) >> idx2; em[(pos_r >> 6) + 2] ^= (bit & 0x3FFFFFUL) >> ((63 - idx_r)); pos_r += PARAM_N2; } } } /** * @brief Compute the Hamming weight of the 64-bit integer n * * The Hamming weight is computed using a trick described in * Henry S. Warren : "Hacker's Delight", chap 5., p. 66 * @param[out] the Hamming weight of n * @param[in] a 64-bit integer n */ static inline int32_t popcount(uint64_t n) { n -= (n >> 1) & 0x5555555555555555UL; n = (n & 0x3333333333333333UL) + ((n >> 2) & 0x3333333333333333UL); n = (n + (n >> 4)) & 0x0f0f0f0f0f0f0f0fUL; return (n * 0x0101010101010101UL) >> 56; } /** * @brief Decoding the code words to a message using the repetition code * * We use a majority decoding. In fact we have that PARAM_N2 = 2 * PARAM_T + 1, thus, * if the Hamming weight of the vector is greater than PARAM_T, the code word is decoded * to 1 and 0 otherwise. * * @param[out] m Pointer to an array that is the message * @param[in] em Pointer to an array that is the code word */ void PQCLEAN_HQC256_CLEAN_repetition_code_decode(uint64_t *m, const uint64_t *em) { uint32_t t = 0; uint32_t b, bn, bi, c, cn, ci; uint64_t cx, ones; uint64_t cy; uint64_t mask; for (b = 0; b < PARAM_N1N2 - PARAM_N2 + 1; b += PARAM_N2) { bn = b >> 6; bi = b & 63; c = b + PARAM_N2 - 1; cn = c >> 6; ci = c & 63; cx = em[cn] << (63 - ci); mask = (uint64_t) (-((int64_t) (cn ^ (bn + 1))) >> 63); // cn != bn+1 cy = em[bn + 1]; ones = popcount((em[bn] >> bi) | (cx & mask)) + popcount((mask & cy) + (~mask & cx)); m[t >> 6] |= (uint64_t) (((((int64_t)PARAM_T - ones) >> 63) & 1) << (t & 63)); // 1 << (t&63) if ones > PARAM_T else 0 t++; } }