/* This file is for Niederreiter encryption */ #include "encrypt.h" #include "params.h" #include "randombytes.h" #include "util.h" #include #include #include #include #include "gf.h" /* input: public key pk, error vector e */ /* output: syndrome s */ extern void PQCLEAN_MCELIECE6960119_SSE_syndrome_asm(unsigned char *s, const unsigned char *pk, unsigned char *e); /* output: e, an error vector of weight t */ static void gen_e(unsigned char *e) { size_t i, j; int eq, count; uint16_t ind[ SYS_T * 2 ]; uint32_t ind32[ SYS_T * 2 ]; uint64_t e_int[ (SYS_N + 63) / 64 ]; uint64_t one = 1; uint64_t mask; uint64_t val[ SYS_T ]; while (1) { randombytes((uint8_t *)ind, sizeof(ind)); for (i = 0; i < SYS_T * 2; i++) { ind[i] &= GFMASK; } // moving and counting indices in the correct range count = 0; for (i = 0; i < SYS_T * 2; i++) { if (ind[i] < SYS_N) { ind32[ count++ ] = ind[i]; } } if (count < SYS_T) { continue; } // check for repetition eq = 0; for (i = 1; i < SYS_T; i++) { for (j = 0; j < i; j++) { if (ind32[i] == ind32[j]) { eq = 1; } } } if (eq == 0) { break; } } for (j = 0; j < SYS_T; j++) { val[j] = one << (ind32[j] & 63); } for (i = 0; i < (SYS_N + 63) / 64; i++) { e_int[i] = 0; for (j = 0; j < SYS_T; j++) { mask = i ^ (ind32[j] >> 6); mask -= 1; mask >>= 63; mask = -mask; e_int[i] |= val[j] & mask; } } for (i = 0; i < (SYS_N + 63) / 64 - 1; i++) { PQCLEAN_MCELIECE6960119_SSE_store8(e, e_int[i]); e += 8; } for (j = 0; j < (SYS_N % 64); j += 8) { e[ j / 8 ] = (e_int[i] >> j) & 0xFF; } } /* input: public key pk */ /* output: error vector e, syndrome s */ void PQCLEAN_MCELIECE6960119_SSE_encrypt(unsigned char *s, unsigned char *e, const unsigned char *pk) { gen_e(e); PQCLEAN_MCELIECE6960119_SSE_syndrome_asm(s, pk, e); }