#include "sign.h" #include "fips202.h" #include "packing.h" #include "params.h" #include "poly.h" #include "polyvec.h" #include "randombytes.h" #include /************************************************* * Name: expand_mat * * Description: Implementation of ExpandA. Generates matrix A with uniformly * random coefficients a_{i,j} by performing rejection * sampling on the output stream of SHAKE128(rho|i|j). * * Arguments: - polyvecl mat[K]: output matrix * - const unsigned char rho[]: byte array containing seed rho **************************************************/ void PQCLEAN_DILITHIUMIII_expand_mat(polyvecl mat[K], const unsigned char rho[SEEDBYTES]) { unsigned int i, j; unsigned char inbuf[SEEDBYTES + 1]; /* Don't change this to smaller values, * sampling later assumes sufficient SHAKE output! * Probability that we need more than 5 blocks: < 2^{-132}. * Probability that we need more than 6 blocks: < 2^{-546}. */ unsigned char outbuf[5 * SHAKE128_RATE]; for (i = 0; i < SEEDBYTES; ++i) { inbuf[i] = rho[i]; } for (i = 0; i < K; ++i) { for (j = 0; j < L; ++j) { inbuf[SEEDBYTES] = i + (j << 4); shake128(outbuf, sizeof(outbuf), inbuf, SEEDBYTES + 1); PQCLEAN_DILITHIUMIII_poly_uniform(mat[i].vec + j, outbuf); } } } /************************************************* * Name: challenge * * Description: Implementation of H. Samples polynomial with 60 nonzero * coefficients in {-1,1} using the output stream of * SHAKE256(mu|w1). * * Arguments: - poly *c: pointer to output polynomial * - const unsigned char mu[]: byte array containing mu * - const polyveck *w1: pointer to vector w1 **************************************************/ void PQCLEAN_DILITHIUMIII_challenge(poly *c, const unsigned char mu[CRHBYTES], const polyveck *w1) { unsigned int i, b, pos; unsigned char inbuf[CRHBYTES + K * POLW1_SIZE_PACKED]; unsigned char outbuf[SHAKE256_RATE]; uint64_t state[25], signs, mask; for (i = 0; i < CRHBYTES; ++i) { inbuf[i] = mu[i]; } for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_polyw1_pack( inbuf + CRHBYTES + i * POLW1_SIZE_PACKED, w1->vec + i); } shake256_absorb(state, inbuf, sizeof(inbuf)); shake256_squeezeblocks(outbuf, 1, state); signs = 0; for (i = 0; i < 8; ++i) { signs |= (uint64_t)outbuf[i] << 8 * i; } pos = 8; mask = 1; for (i = 0; i < N; ++i) { c->coeffs[i] = 0; } for (i = 196; i < 256; ++i) { do { if (pos >= SHAKE256_RATE) { shake256_squeezeblocks(outbuf, 1, state); pos = 0; } b = outbuf[pos++]; } while (b > i); c->coeffs[i] = c->coeffs[b]; c->coeffs[b] = (signs & mask) ? Q - 1 : 1; mask <<= 1; } } /************************************************* * Name: crypto_sign_keypair * * Description: Generates public and private key. * * Arguments: - unsigned char *pk: pointer to output public key (allocated * array of CRYPTO_PUBLICKEYBYTES bytes) * - unsigned char *sk: pointer to output private key (allocated * array of CRYPTO_SECRETKEYBYTES bytes) * * Returns 0 (success) **************************************************/ int PQCLEAN_DILITHIUMIII_crypto_sign_keypair(unsigned char *pk, unsigned char *sk) { unsigned int i; unsigned char seedbuf[3 * SEEDBYTES]; unsigned char tr[CRHBYTES]; unsigned char *rho, *rhoprime, *key; uint16_t nonce = 0; polyvecl mat[K]; polyvecl s1, s1hat; polyveck s2, t, t1, t0; /* Expand 32 bytes of randomness into rho, rhoprime and key */ randombytes(seedbuf, SEEDBYTES); shake256(seedbuf, 3 * SEEDBYTES, seedbuf, SEEDBYTES); rho = seedbuf; rhoprime = rho + SEEDBYTES; key = rho + 2 * SEEDBYTES; /* Expand matrix */ PQCLEAN_DILITHIUMIII_expand_mat(mat, rho); /* Sample short vectors s1 and s2 */ for (i = 0; i < L; ++i) { PQCLEAN_DILITHIUMIII_poly_uniform_eta(s1.vec + i, rhoprime, nonce++); } for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_poly_uniform_eta(s2.vec + i, rhoprime, nonce++); } /* Matrix-vector multiplication */ s1hat = s1; PQCLEAN_DILITHIUMIII_polyvecl_ntt(&s1hat); for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_polyvecl_pointwise_acc_invmontgomery( t.vec + i, mat + i, &s1hat); PQCLEAN_DILITHIUMIII_poly_reduce(t.vec + i); PQCLEAN_DILITHIUMIII_poly_invntt_montgomery(t.vec + i); } /* Add noise vector s2 */ PQCLEAN_DILITHIUMIII_polyveck_add(&t, &t, &s2); /* Extract t1 and write public key */ PQCLEAN_DILITHIUMIII_polyveck_freeze(&t); PQCLEAN_DILITHIUMIII_polyveck_power2round(&t1, &t0, &t); PQCLEAN_DILITHIUMIII_pack_pk(pk, rho, &t1); /* Compute CRH(rho, t1) and write secret key */ shake256(tr, CRHBYTES, pk, CRYPTO_PUBLICKEYBYTES); PQCLEAN_DILITHIUMIII_pack_sk(sk, rho, key, tr, &s1, &s2, &t0); return 0; } /************************************************* * Name: crypto_sign * * Description: Compute signed message. * * Arguments: - unsigned char *sm: pointer to output signed message (allocated * array with CRYPTO_BYTES + mlen bytes), * can be equal to m * - unsigned long long *smlen: pointer to output length of signed * message * - const unsigned char *m: pointer to message to be signed * - unsigned long long mlen: length of message * - const unsigned char *sk: pointer to bit-packed secret key * * Returns 0 (success) **************************************************/ int PQCLEAN_DILITHIUMIII_crypto_sign(unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen, const unsigned char *sk) { unsigned long long i, j; unsigned int n; unsigned char seedbuf[2 * SEEDBYTES + CRHBYTES]; // TODO(thom): nonce in seedbuf (2x) unsigned char tr[CRHBYTES]; unsigned char *rho, *key, *mu; uint16_t nonce = 0; poly c, chat; polyvecl mat[K], s1, y, yhat, z; polyveck s2, t0, w, w1; polyveck h, wcs2, wcs20, ct0, tmp; rho = seedbuf; key = seedbuf + SEEDBYTES; mu = seedbuf + 2 * SEEDBYTES; PQCLEAN_DILITHIUMIII_unpack_sk(rho, key, tr, &s1, &s2, &t0, sk); /* Copy tr and message into the sm buffer, * backwards since m and sm can be equal in SUPERCOP API */ for (i = 1; i <= mlen; ++i) { sm[CRYPTO_BYTES + mlen - i] = m[mlen - i]; } for (i = 0; i < CRHBYTES; ++i) { sm[CRYPTO_BYTES - CRHBYTES + i] = tr[i]; } /* Compute CRH(tr, msg) */ shake256(mu, CRHBYTES, sm + CRYPTO_BYTES - CRHBYTES, CRHBYTES + mlen); /* Expand matrix and transform vectors */ PQCLEAN_DILITHIUMIII_expand_mat(mat, rho); PQCLEAN_DILITHIUMIII_polyvecl_ntt(&s1); PQCLEAN_DILITHIUMIII_polyveck_ntt(&s2); PQCLEAN_DILITHIUMIII_polyveck_ntt(&t0); rej: /* Sample intermediate vector y */ for (i = 0; i < L; ++i) { PQCLEAN_DILITHIUMIII_poly_uniform_gamma1m1(y.vec + i, key, nonce++); } /* Matrix-vector multiplication */ yhat = y; PQCLEAN_DILITHIUMIII_polyvecl_ntt(&yhat); for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_polyvecl_pointwise_acc_invmontgomery( w.vec + i, mat + i, &yhat); PQCLEAN_DILITHIUMIII_poly_reduce(w.vec + i); PQCLEAN_DILITHIUMIII_poly_invntt_montgomery(w.vec + i); } /* Decompose w and call the random oracle */ PQCLEAN_DILITHIUMIII_polyveck_csubq(&w); PQCLEAN_DILITHIUMIII_polyveck_decompose(&w1, &tmp, &w); PQCLEAN_DILITHIUMIII_challenge(&c, mu, &w1); /* Compute z, reject if it reveals secret */ chat = c; PQCLEAN_DILITHIUMIII_poly_ntt(&chat); for (i = 0; i < L; ++i) { PQCLEAN_DILITHIUMIII_poly_pointwise_invmontgomery(z.vec + i, &chat, s1.vec + i); PQCLEAN_DILITHIUMIII_poly_invntt_montgomery(z.vec + i); } PQCLEAN_DILITHIUMIII_polyvecl_add(&z, &z, &y); PQCLEAN_DILITHIUMIII_polyvecl_freeze(&z); if (PQCLEAN_DILITHIUMIII_polyvecl_chknorm(&z, GAMMA1 - BETA)) { goto rej; } /* Compute w - cs2, reject if w1 can not be computed from it */ for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_poly_pointwise_invmontgomery(wcs2.vec + i, &chat, s2.vec + i); PQCLEAN_DILITHIUMIII_poly_invntt_montgomery(wcs2.vec + i); } PQCLEAN_DILITHIUMIII_polyveck_sub(&wcs2, &w, &wcs2); PQCLEAN_DILITHIUMIII_polyveck_freeze(&wcs2); PQCLEAN_DILITHIUMIII_polyveck_decompose(&tmp, &wcs20, &wcs2); PQCLEAN_DILITHIUMIII_polyveck_csubq(&wcs20); if (PQCLEAN_DILITHIUMIII_polyveck_chknorm(&wcs20, GAMMA2 - BETA)) { goto rej; } for (i = 0; i < K; ++i) { for (j = 0; j < N; ++j) { if (tmp.vec[i].coeffs[j] != w1.vec[i].coeffs[j]) { goto rej; } } } /* Compute hints for w1 */ for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_poly_pointwise_invmontgomery(ct0.vec + i, &chat, t0.vec + i); PQCLEAN_DILITHIUMIII_poly_invntt_montgomery(ct0.vec + i); } PQCLEAN_DILITHIUMIII_polyveck_csubq(&ct0); if (PQCLEAN_DILITHIUMIII_polyveck_chknorm(&ct0, GAMMA2)) { goto rej; } PQCLEAN_DILITHIUMIII_polyveck_add(&tmp, &wcs2, &ct0); PQCLEAN_DILITHIUMIII_polyveck_csubq(&tmp); n = PQCLEAN_DILITHIUMIII_polyveck_make_hint(&h, &wcs2, &tmp); if (n > OMEGA) { goto rej; } /* Write signature */ PQCLEAN_DILITHIUMIII_pack_sig(sm, &z, &h, &c); *smlen = mlen + CRYPTO_BYTES; return 0; } /************************************************* * Name: crypto_sign_open * * Description: Verify signed message. * * Arguments: - unsigned char *m: pointer to output message (allocated * array with smlen bytes), can be equal to sm * - unsigned long long *mlen: pointer to output length of message * - const unsigned char *sm: pointer to signed message * - unsigned long long smlen: length of signed message * - const unsigned char *sk: pointer to bit-packed public key * * Returns 0 if signed message could be verified correctly and -1 otherwise **************************************************/ int PQCLEAN_DILITHIUMIII_crypto_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk) { unsigned long long i; unsigned char rho[SEEDBYTES]; unsigned char mu[CRHBYTES]; poly c, chat, cp; polyvecl mat[K], z; polyveck t1, w1, h, tmp1, tmp2; if (smlen < CRYPTO_BYTES) { goto badsig; } *mlen = smlen - CRYPTO_BYTES; PQCLEAN_DILITHIUMIII_unpack_pk(rho, &t1, pk); if (PQCLEAN_DILITHIUMIII_unpack_sig(&z, &h, &c, sm)) { goto badsig; } if (PQCLEAN_DILITHIUMIII_polyvecl_chknorm(&z, GAMMA1 - BETA)) { goto badsig; } /* Compute CRH(CRH(rho, t1), msg) using m as "playground" buffer */ if (sm != m) { for (i = 0; i < *mlen; ++i) { m[CRYPTO_BYTES + i] = sm[CRYPTO_BYTES + i]; } } shake256(m + CRYPTO_BYTES - CRHBYTES, CRHBYTES, pk, CRYPTO_PUBLICKEYBYTES); shake256(mu, CRHBYTES, m + CRYPTO_BYTES - CRHBYTES, CRHBYTES + *mlen); /* Matrix-vector multiplication; compute Az - c2^dt1 */ PQCLEAN_DILITHIUMIII_expand_mat(mat, rho); PQCLEAN_DILITHIUMIII_polyvecl_ntt(&z); for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_polyvecl_pointwise_acc_invmontgomery(tmp1.vec + i, mat + i, &z); } chat = c; PQCLEAN_DILITHIUMIII_poly_ntt(&chat); PQCLEAN_DILITHIUMIII_polyveck_shiftl(&t1, D); PQCLEAN_DILITHIUMIII_polyveck_ntt(&t1); for (i = 0; i < K; ++i) { PQCLEAN_DILITHIUMIII_poly_pointwise_invmontgomery(tmp2.vec + i, &chat, t1.vec + i); } PQCLEAN_DILITHIUMIII_polyveck_sub(&tmp1, &tmp1, &tmp2); PQCLEAN_DILITHIUMIII_polyveck_reduce(&tmp1); PQCLEAN_DILITHIUMIII_polyveck_invntt_montgomery(&tmp1); /* Reconstruct w1 */ PQCLEAN_DILITHIUMIII_polyveck_csubq(&tmp1); PQCLEAN_DILITHIUMIII_polyveck_use_hint(&w1, &tmp1, &h); /* Call random oracle and verify challenge */ PQCLEAN_DILITHIUMIII_challenge(&cp, mu, &w1); for (i = 0; i < N; ++i) { if (c.coeffs[i] != cp.coeffs[i]) { goto badsig; } } /* All good, copy msg, return 0 */ for (i = 0; i < *mlen; ++i) { m[i] = sm[CRYPTO_BYTES + i]; } return 0; /* Signature verification failed */ badsig: *mlen = (unsigned long long)-1; for (i = 0; i < smlen; ++i) { m[i] = 0; } return -1; }