#ifndef GF2X_ARITH_MOD_XPLUSONE_H #define GF2X_ARITH_MOD_XPLUSONE_H #include "qc_ldpc_parameters.h" #include "gf2x_arith.h" #include "rng.h" #define NUM_BITS_GF2X_ELEMENT (P) // 152267 #define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 #define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1) #define NUM_BITS_GF2X_MODULUS (P+1) #define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380 #define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1)) #define INVALID_POS_VALUE (P) #define P_BITS (18) // log_2(p) = 17.216243783 static inline void gf2x_copy(DIGIT dest[], const DIGIT in[]) { for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { dest[i] = in[i]; } } /* returns the coefficient of the x^exponent term as the LSB of a digit */ static inline DIGIT gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) { unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; return (poly[digitIdx] >> (DIGIT_SIZE_b - 1 - inDigitIdx)) & ((DIGIT) 1) ; } /* sets the coefficient of the x^exponent term as the LSB of a digit */ static inline void gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) { unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; /* clear given coefficient */ DIGIT mask = ~( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); poly[digitIdx] = poly[digitIdx] & mask; poly[digitIdx] = poly[digitIdx] | (( value & ((DIGIT) 1)) << (DIGIT_SIZE_b - 1 - inDigitIdx)); } /* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */ static inline void gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) { unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent; unsigned int digitIdx = straightIdx / DIGIT_SIZE_b; unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b; /* clear given coefficient */ DIGIT mask = ( ((DIGIT) 1) << (DIGIT_SIZE_b - 1 - inDigitIdx)); poly[digitIdx] = poly[digitIdx] ^ mask; } /* population count for an unsigned 64-bit integer Source: Hacker's delight, p.66 */ static int popcount_uint64t(uint64_t x) { x -= (x >> 1) & 0x5555555555555555; x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; return (int)((x * 0x0101010101010101) >> 56); } /* population count for a single polynomial */ static inline int population_count(DIGIT *poly) { int ret = 0; for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) { ret += popcount_uint64t(poly[i]); } return ret; } static inline void gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) { gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT); } static inline int partition(POSITION_T arr[], int lo, int hi) { POSITION_T x = arr[hi]; POSITION_T tmp; int i = (lo - 1); for (int j = lo; j <= hi - 1; j++) { if (arr[j] <= x) { i++; tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } } tmp = arr[i + 1]; arr[i + 1] = arr[hi]; arr[hi] = tmp; return i + 1; } static inline void quicksort_sparse(POSITION_T Res[]) { int stack[DV * M]; int hi, lo, pivot, tos = -1; stack[++tos] = 0; stack[++tos] = (DV * M) - 1; while (tos >= 0 ) { hi = stack[tos--]; lo = stack[tos--]; pivot = partition(Res, lo, hi); if ( (pivot - 1) > lo) { stack[++tos] = lo; stack[++tos] = pivot - 1; } if ( (pivot + 1) < hi) { stack[++tos] = pivot + 1; stack[++tos] = hi; } } } void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]); void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx); void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos); void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly); int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]); #endif