/******************************************************************************************** * FrodoKEM: Learning with Errors Key Encapsulation * * Abstract: matrix arithmetic functions used by the KEM *********************************************************************************************/ #include #include #include "aes.h" #include "api.h" #include "common.h" #include "params.h" int PQCLEAN_FRODOKEM640AES_OPT_mul_add_as_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) { // Generate-and-multiply: generate matrix A (N x N) row-wise, multiply by s on the right. // Inputs: s, e (N x N_BAR) // Output: out = A*s + e (N x N_BAR) int i, j, k; int16_t a_row[4 * PARAMS_N]; for (i = 0; i < (PARAMS_N * PARAMS_NBAR); i += 2) { *((uint32_t *)&out[i]) = *((uint32_t *)&e[i]); } int16_t a_row_temp[4 * PARAMS_N] = {0}; // Take four lines of A at once aes128ctx ctx128; aes128_keyexp(&ctx128, seed_A); for (j = 0; j < PARAMS_N; j += PARAMS_STRIPE_STEP) { a_row_temp[j + 1 + 0 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(j); // Loading values in the little-endian order a_row_temp[j + 1 + 1 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(j); a_row_temp[j + 1 + 2 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(j); a_row_temp[j + 1 + 3 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(j); } for (i = 0; i < PARAMS_N; i += 4) { for (j = 0; j < PARAMS_N; j += PARAMS_STRIPE_STEP) { // Go through A, four rows at a time a_row_temp[j + 0 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(i + 0); // Loading values in the little-endian order a_row_temp[j + 1 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(i + 1); a_row_temp[j + 2 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(i + 2); a_row_temp[j + 3 * PARAMS_N] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(i + 3); } aes128_ecb((uint8_t *)a_row, (uint8_t *)a_row_temp, 4 * PARAMS_N * sizeof(int16_t) / AES_BLOCKBYTES, &ctx128); for (k = 0; k < 4 * PARAMS_N; k++) { a_row[k] = PQCLEAN_FRODOKEM640AES_OPT_LE_TO_UINT16(a_row[k]); } for (k = 0; k < PARAMS_NBAR; k++) { uint16_t sum[4] = {0}; for (j = 0; j < PARAMS_N; j++) { // Matrix-vector multiplication uint16_t sp = s[k * PARAMS_N + j]; sum[0] += a_row[0 * PARAMS_N + j] * sp; // Go through four lines with same s sum[1] += a_row[1 * PARAMS_N + j] * sp; sum[2] += a_row[2 * PARAMS_N + j] * sp; sum[3] += a_row[3 * PARAMS_N + j] * sp; } out[(i + 0)*PARAMS_NBAR + k] += sum[0]; out[(i + 2)*PARAMS_NBAR + k] += sum[2]; out[(i + 1)*PARAMS_NBAR + k] += sum[1]; out[(i + 3)*PARAMS_NBAR + k] += sum[3]; } } return 1; } int PQCLEAN_FRODOKEM640AES_OPT_mul_add_sa_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) { // Generate-and-multiply: generate matrix A (N x N) column-wise, multiply by s' on the left. // Inputs: s', e' (N_BAR x N) // Output: out = s'*A + e' (N_BAR x N) int i, j, kk; for (i = 0; i < (PARAMS_N * PARAMS_NBAR); i += 2) { *((uint32_t *)&out[i]) = *((uint32_t *)&e[i]); } int k; uint16_t a_cols[PARAMS_N * PARAMS_STRIPE_STEP] = {0}; uint16_t a_cols_t[PARAMS_N * PARAMS_STRIPE_STEP]; uint16_t a_cols_temp[PARAMS_N * PARAMS_STRIPE_STEP] = {0}; aes128ctx ctx128; aes128_keyexp(&ctx128, seed_A); for (i = 0, j = 0; i < PARAMS_N; i++, j += PARAMS_STRIPE_STEP) { a_cols_temp[j] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(i); // Loading values in the little-endian order } for (kk = 0; kk < PARAMS_N; kk += PARAMS_STRIPE_STEP) { // Go through A's columns, 8 (== PARAMS_STRIPE_STEP) columns at a time. for (i = 0; i < (PARAMS_N * PARAMS_STRIPE_STEP); i += PARAMS_STRIPE_STEP) { a_cols_temp[i + 1] = PQCLEAN_FRODOKEM640AES_OPT_UINT16_TO_LE(kk); // Loading values in the little-endian order } aes128_ecb((uint8_t *)a_cols, (uint8_t *)a_cols_temp, PARAMS_N * PARAMS_STRIPE_STEP * sizeof(int16_t) / AES_BLOCKBYTES, &ctx128); for (i = 0; i < PARAMS_N; i++) { // Transpose a_cols to have access to it in the column-major order. for (k = 0; k < PARAMS_STRIPE_STEP; k++) { a_cols_t[k * PARAMS_N + i] = PQCLEAN_FRODOKEM640AES_OPT_LE_TO_UINT16(a_cols[i * PARAMS_STRIPE_STEP + k]); } } for (i = 0; i < PARAMS_NBAR; i++) { for (k = 0; k < PARAMS_STRIPE_STEP; k += PARAMS_PARALLEL) { uint16_t sum[PARAMS_PARALLEL] = {0}; for (j = 0; j < PARAMS_N; j++) { // Matrix-vector multiplication uint16_t sp = s[i * PARAMS_N + j]; sum[0] += sp * a_cols_t[(k + 0) * PARAMS_N + j]; sum[1] += sp * a_cols_t[(k + 1) * PARAMS_N + j]; sum[2] += sp * a_cols_t[(k + 2) * PARAMS_N + j]; sum[3] += sp * a_cols_t[(k + 3) * PARAMS_N + j]; } out[i * PARAMS_N + kk + k + 0] += sum[0]; out[i * PARAMS_N + kk + k + 2] += sum[2]; out[i * PARAMS_N + kk + k + 1] += sum[1]; out[i * PARAMS_N + kk + k + 3] += sum[3]; } } } return 1; }