/* * Constant time implementation of the Haraka hash function. * * The bit-sliced implementation of the AES round functions are * based on the AES implementation in BearSSL written * by Thomas Pornin */ #include #include #include #include "haraka.h" #define HARAKAS_RATE 32 static const uint64_t haraka512_rc64[10][8] = { {0x24cf0ab9086f628b, 0xbdd6eeecc83b8382, 0xd96fb0306cdad0a7, 0xaace082ac8f95f89, 0x449d8e8870d7041f, 0x49bb2f80b2b3e2f8, 0x0569ae98d93bb258, 0x23dc9691e7d6a4b1}, {0xd8ba10ede0fe5b6e, 0x7ecf7dbe424c7b8e, 0x6ea9949c6df62a31, 0xbf3f3c97ec9c313e, 0x241d03a196a1861e, 0xead3a51116e5a2ea, 0x77d479fcad9574e3, 0x18657a1af894b7a0}, {0x10671e1a7f595522, 0xd9a00ff675d28c7b, 0x2f1edf0d2b9ba661, 0xb8ff58b8e3de45f9, 0xee29261da9865c02, 0xd1532aa4b50bdf43, 0x8bf858159b231bb1, 0xdf17439d22d4f599}, {0xdd4b2f0870b918c0, 0x757a81f3b39b1bb6, 0x7a5c556898952e3f, 0x7dd70a16d915d87a, 0x3ae61971982b8301, 0xc3ab319e030412be, 0x17c0033ac094a8cb, 0x5a0630fc1a8dc4ef}, {0x17708988c1632f73, 0xf92ddae090b44f4f, 0x11ac0285c43aa314, 0x509059941936b8ba, 0xd03e152fa2ce9b69, 0x3fbcbcb63a32998b, 0x6204696d692254f7, 0x915542ed93ec59b4}, {0xf4ed94aa8879236e, 0xff6cb41cd38e03c0, 0x069b38602368aeab, 0x669495b820f0ddba, 0xf42013b1b8bf9e3d, 0xcf935efe6439734d, 0xbc1dcf42ca29e3f8, 0x7e6d3ed29f78ad67}, {0xf3b0f6837ffcddaa, 0x3a76faef934ddf41, 0xcec7ae583a9c8e35, 0xe4dd18c68f0260af, 0x2c0e5df1ad398eaa, 0x478df5236ae22e8c, 0xfb944c46fe865f39, 0xaa48f82f028132ba}, {0x231b9ae2b76aca77, 0x292a76a712db0b40, 0x5850625dc8134491, 0x73137dd469810fb5, 0x8a12a6a202a474fd, 0xd36fd9daa78bdb80, 0xb34c5e733505706f, 0xbaf1cdca818d9d96}, {0x2e99781335e8c641, 0xbddfe5cce47d560e, 0xf74e9bf32e5e040c, 0x1d7a709d65996be9, 0x670df36a9cf66cdd, 0xd05ef84a176a2875, 0x0f888e828cb1c44e, 0x1a79e9c9727b052c}, {0x83497348628d84de, 0x2e9387d51f22a754, 0xb000068da2f852d6, 0x378c9e1190fd6fe5, 0x870027c316de7293, 0xe51a9d4462e047bb, 0x90ecf7f8c6251195, 0x655953bfbed90a9c}, }; static uint64_t tweaked512_rc64[10][8]; static uint32_t tweaked256_rc32[10][8]; static uint32_t tweaked256_rc32_sseed[10][8]; static inline uint32_t br_dec32le(const unsigned char *src) { return (uint32_t)src[0] | ((uint32_t)src[1] << 8) | ((uint32_t)src[2] << 16) | ((uint32_t)src[3] << 24); } static void br_range_dec32le(uint32_t *v, size_t num, const unsigned char *src) { while (num-- > 0) { *v ++ = br_dec32le(src); src += 4; } } static inline void br_enc32le(unsigned char *dst, uint32_t x) { dst[0] = (unsigned char)x; dst[1] = (unsigned char)(x >> 8); dst[2] = (unsigned char)(x >> 16); dst[3] = (unsigned char)(x >> 24); } static void br_range_enc32le(unsigned char *dst, const uint32_t *v, size_t num) { while (num-- > 0) { br_enc32le(dst, *v ++); dst += 4; } } static void br_aes_ct64_bitslice_Sbox(uint64_t *q) { /* * This S-box implementation is a straightforward translation of * the circuit described by Boyar and Peralta in "A new * combinational logic minimization technique with applications * to cryptology" (https://eprint.iacr.org/2009/191.pdf). * * Note that variables x* (input) and s* (output) are numbered * in "reverse" order (x0 is the high bit, x7 is the low bit). */ uint64_t x0, x1, x2, x3, x4, x5, x6, x7; uint64_t y1, y2, y3, y4, y5, y6, y7, y8, y9; uint64_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; uint64_t y20, y21; uint64_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9; uint64_t z10, z11, z12, z13, z14, z15, z16, z17; uint64_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; uint64_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19; uint64_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29; uint64_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39; uint64_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49; uint64_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59; uint64_t t60, t61, t62, t63, t64, t65, t66, t67; uint64_t s0, s1, s2, s3, s4, s5, s6, s7; x0 = q[7]; x1 = q[6]; x2 = q[5]; x3 = q[4]; x4 = q[3]; x5 = q[2]; x6 = q[1]; x7 = q[0]; /* * Top linear transformation. */ y14 = x3 ^ x5; y13 = x0 ^ x6; y9 = x0 ^ x3; y8 = x0 ^ x5; t0 = x1 ^ x2; y1 = t0 ^ x7; y4 = y1 ^ x3; y12 = y13 ^ y14; y2 = y1 ^ x0; y5 = y1 ^ x6; y3 = y5 ^ y8; t1 = x4 ^ y12; y15 = t1 ^ x5; y20 = t1 ^ x1; y6 = y15 ^ x7; y10 = y15 ^ t0; y11 = y20 ^ y9; y7 = x7 ^ y11; y17 = y10 ^ y11; y19 = y10 ^ y8; y16 = t0 ^ y11; y21 = y13 ^ y16; y18 = x0 ^ y16; /* * Non-linear section. */ t2 = y12 & y15; t3 = y3 & y6; t4 = t3 ^ t2; t5 = y4 & x7; t6 = t5 ^ t2; t7 = y13 & y16; t8 = y5 & y1; t9 = t8 ^ t7; t10 = y2 & y7; t11 = t10 ^ t7; t12 = y9 & y11; t13 = y14 & y17; t14 = t13 ^ t12; t15 = y8 & y10; t16 = t15 ^ t12; t17 = t4 ^ t14; t18 = t6 ^ t16; t19 = t9 ^ t14; t20 = t11 ^ t16; t21 = t17 ^ y20; t22 = t18 ^ y19; t23 = t19 ^ y21; t24 = t20 ^ y18; t25 = t21 ^ t22; t26 = t21 & t23; t27 = t24 ^ t26; t28 = t25 & t27; t29 = t28 ^ t22; t30 = t23 ^ t24; t31 = t22 ^ t26; t32 = t31 & t30; t33 = t32 ^ t24; t34 = t23 ^ t33; t35 = t27 ^ t33; t36 = t24 & t35; t37 = t36 ^ t34; t38 = t27 ^ t36; t39 = t29 & t38; t40 = t25 ^ t39; t41 = t40 ^ t37; t42 = t29 ^ t33; t43 = t29 ^ t40; t44 = t33 ^ t37; t45 = t42 ^ t41; z0 = t44 & y15; z1 = t37 & y6; z2 = t33 & x7; z3 = t43 & y16; z4 = t40 & y1; z5 = t29 & y7; z6 = t42 & y11; z7 = t45 & y17; z8 = t41 & y10; z9 = t44 & y12; z10 = t37 & y3; z11 = t33 & y4; z12 = t43 & y13; z13 = t40 & y5; z14 = t29 & y2; z15 = t42 & y9; z16 = t45 & y14; z17 = t41 & y8; /* * Bottom linear transformation. */ t46 = z15 ^ z16; t47 = z10 ^ z11; t48 = z5 ^ z13; t49 = z9 ^ z10; t50 = z2 ^ z12; t51 = z2 ^ z5; t52 = z7 ^ z8; t53 = z0 ^ z3; t54 = z6 ^ z7; t55 = z16 ^ z17; t56 = z12 ^ t48; t57 = t50 ^ t53; t58 = z4 ^ t46; t59 = z3 ^ t54; t60 = t46 ^ t57; t61 = z14 ^ t57; t62 = t52 ^ t58; t63 = t49 ^ t58; t64 = z4 ^ t59; t65 = t61 ^ t62; t66 = z1 ^ t63; s0 = t59 ^ t63; s6 = t56 ^ ~t62; s7 = t48 ^ ~t60; t67 = t64 ^ t65; s3 = t53 ^ t66; s4 = t51 ^ t66; s5 = t47 ^ t65; s1 = t64 ^ ~s3; s2 = t55 ^ ~t67; q[7] = s0; q[6] = s1; q[5] = s2; q[4] = s3; q[3] = s4; q[2] = s5; q[1] = s6; q[0] = s7; } static void br_aes_ct_bitslice_Sbox(uint32_t *q) { /* * This S-box implementation is a straightforward translation of * the circuit described by Boyar and Peralta in "A new * combinational logic minimization technique with applications * to cryptology" (https://eprint.iacr.org/2009/191.pdf). * * Note that variables x* (input) and s* (output) are numbered * in "reverse" order (x0 is the high bit, x7 is the low bit). */ uint32_t x0, x1, x2, x3, x4, x5, x6, x7; uint32_t y1, y2, y3, y4, y5, y6, y7, y8, y9; uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; uint32_t y20, y21; uint32_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9; uint32_t z10, z11, z12, z13, z14, z15, z16, z17; uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; uint32_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19; uint32_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29; uint32_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39; uint32_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49; uint32_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59; uint32_t t60, t61, t62, t63, t64, t65, t66, t67; uint32_t s0, s1, s2, s3, s4, s5, s6, s7; x0 = q[7]; x1 = q[6]; x2 = q[5]; x3 = q[4]; x4 = q[3]; x5 = q[2]; x6 = q[1]; x7 = q[0]; /* * Top linear transformation. */ y14 = x3 ^ x5; y13 = x0 ^ x6; y9 = x0 ^ x3; y8 = x0 ^ x5; t0 = x1 ^ x2; y1 = t0 ^ x7; y4 = y1 ^ x3; y12 = y13 ^ y14; y2 = y1 ^ x0; y5 = y1 ^ x6; y3 = y5 ^ y8; t1 = x4 ^ y12; y15 = t1 ^ x5; y20 = t1 ^ x1; y6 = y15 ^ x7; y10 = y15 ^ t0; y11 = y20 ^ y9; y7 = x7 ^ y11; y17 = y10 ^ y11; y19 = y10 ^ y8; y16 = t0 ^ y11; y21 = y13 ^ y16; y18 = x0 ^ y16; /* * Non-linear section. */ t2 = y12 & y15; t3 = y3 & y6; t4 = t3 ^ t2; t5 = y4 & x7; t6 = t5 ^ t2; t7 = y13 & y16; t8 = y5 & y1; t9 = t8 ^ t7; t10 = y2 & y7; t11 = t10 ^ t7; t12 = y9 & y11; t13 = y14 & y17; t14 = t13 ^ t12; t15 = y8 & y10; t16 = t15 ^ t12; t17 = t4 ^ t14; t18 = t6 ^ t16; t19 = t9 ^ t14; t20 = t11 ^ t16; t21 = t17 ^ y20; t22 = t18 ^ y19; t23 = t19 ^ y21; t24 = t20 ^ y18; t25 = t21 ^ t22; t26 = t21 & t23; t27 = t24 ^ t26; t28 = t25 & t27; t29 = t28 ^ t22; t30 = t23 ^ t24; t31 = t22 ^ t26; t32 = t31 & t30; t33 = t32 ^ t24; t34 = t23 ^ t33; t35 = t27 ^ t33; t36 = t24 & t35; t37 = t36 ^ t34; t38 = t27 ^ t36; t39 = t29 & t38; t40 = t25 ^ t39; t41 = t40 ^ t37; t42 = t29 ^ t33; t43 = t29 ^ t40; t44 = t33 ^ t37; t45 = t42 ^ t41; z0 = t44 & y15; z1 = t37 & y6; z2 = t33 & x7; z3 = t43 & y16; z4 = t40 & y1; z5 = t29 & y7; z6 = t42 & y11; z7 = t45 & y17; z8 = t41 & y10; z9 = t44 & y12; z10 = t37 & y3; z11 = t33 & y4; z12 = t43 & y13; z13 = t40 & y5; z14 = t29 & y2; z15 = t42 & y9; z16 = t45 & y14; z17 = t41 & y8; /* * Bottom linear transformation. */ t46 = z15 ^ z16; t47 = z10 ^ z11; t48 = z5 ^ z13; t49 = z9 ^ z10; t50 = z2 ^ z12; t51 = z2 ^ z5; t52 = z7 ^ z8; t53 = z0 ^ z3; t54 = z6 ^ z7; t55 = z16 ^ z17; t56 = z12 ^ t48; t57 = t50 ^ t53; t58 = z4 ^ t46; t59 = z3 ^ t54; t60 = t46 ^ t57; t61 = z14 ^ t57; t62 = t52 ^ t58; t63 = t49 ^ t58; t64 = z4 ^ t59; t65 = t61 ^ t62; t66 = z1 ^ t63; s0 = t59 ^ t63; s6 = t56 ^ ~t62; s7 = t48 ^ ~t60; t67 = t64 ^ t65; s3 = t53 ^ t66; s4 = t51 ^ t66; s5 = t47 ^ t65; s1 = t64 ^ ~s3; s2 = t55 ^ ~t67; q[7] = s0; q[6] = s1; q[5] = s2; q[4] = s3; q[3] = s4; q[2] = s5; q[1] = s6; q[0] = s7; } static void br_aes_ct_ortho(uint32_t *q) { #define SWAPN_32(cl, ch, s, x, y) do { \ uint32_t a, b; \ a = (x); \ b = (y); \ (x) = (a & (uint32_t)(cl)) | ((b & (uint32_t)(cl)) << (s)); \ (y) = ((a & (uint32_t)(ch)) >> (s)) | (b & (uint32_t)(ch)); \ } while (0) #define SWAP2_32(x, y) SWAPN_32(0x55555555, 0xAAAAAAAA, 1, x, y) #define SWAP4_32(x, y) SWAPN_32(0x33333333, 0xCCCCCCCC, 2, x, y) #define SWAP8_32(x, y) SWAPN_32(0x0F0F0F0F, 0xF0F0F0F0, 4, x, y) SWAP2_32(q[0], q[1]); SWAP2_32(q[2], q[3]); SWAP2_32(q[4], q[5]); SWAP2_32(q[6], q[7]); SWAP4_32(q[0], q[2]); SWAP4_32(q[1], q[3]); SWAP4_32(q[4], q[6]); SWAP4_32(q[5], q[7]); SWAP8_32(q[0], q[4]); SWAP8_32(q[1], q[5]); SWAP8_32(q[2], q[6]); SWAP8_32(q[3], q[7]); } static inline void add_round_key32(uint32_t *q, const uint32_t *sk) { q[0] ^= sk[0]; q[1] ^= sk[1]; q[2] ^= sk[2]; q[3] ^= sk[3]; q[4] ^= sk[4]; q[5] ^= sk[5]; q[6] ^= sk[6]; q[7] ^= sk[7]; } static inline void shift_rows32(uint32_t *q) { int i; for (i = 0; i < 8; i++) { uint32_t x; x = q[i]; q[i] = (x & 0x000000FF) | ((x & 0x0000FC00) >> 2) | ((x & 0x00000300) << 6) | ((x & 0x00F00000) >> 4) | ((x & 0x000F0000) << 4) | ((x & 0xC0000000) >> 6) | ((x & 0x3F000000) << 2); } } static inline uint32_t rotr16(uint32_t x) { return (x << 16) | (x >> 16); } static inline void mix_columns32(uint32_t *q) { uint32_t q0, q1, q2, q3, q4, q5, q6, q7; uint32_t r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >> 8) | (q0 << 24); r1 = (q1 >> 8) | (q1 << 24); r2 = (q2 >> 8) | (q2 << 24); r3 = (q3 >> 8) | (q3 << 24); r4 = (q4 >> 8) | (q4 << 24); r5 = (q5 >> 8) | (q5 << 24); r6 = (q6 >> 8) | (q6 << 24); r7 = (q7 >> 8) | (q7 << 24); q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0); q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1); q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2); q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3); q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4); q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5); q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6); q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7); } static void br_aes_ct64_ortho(uint64_t *q) { #define SWAPN(cl, ch, s, x, y) do { \ uint64_t a, b; \ a = (x); \ b = (y); \ (x) = (a & (uint64_t)(cl)) | ((b & (uint64_t)(cl)) << (s)); \ (y) = ((a & (uint64_t)(ch)) >> (s)) | (b & (uint64_t)(ch)); \ } while (0) #define SWAP2(x, y) SWAPN(0x5555555555555555, 0xAAAAAAAAAAAAAAAA, 1, x, y) #define SWAP4(x, y) SWAPN(0x3333333333333333, 0xCCCCCCCCCCCCCCCC, 2, x, y) #define SWAP8(x, y) SWAPN(0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0, 4, x, y) SWAP2(q[0], q[1]); SWAP2(q[2], q[3]); SWAP2(q[4], q[5]); SWAP2(q[6], q[7]); SWAP4(q[0], q[2]); SWAP4(q[1], q[3]); SWAP4(q[4], q[6]); SWAP4(q[5], q[7]); SWAP8(q[0], q[4]); SWAP8(q[1], q[5]); SWAP8(q[2], q[6]); SWAP8(q[3], q[7]); } static void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w) { uint64_t x0, x1, x2, x3; x0 = w[0]; x1 = w[1]; x2 = w[2]; x3 = w[3]; x0 |= (x0 << 16); x1 |= (x1 << 16); x2 |= (x2 << 16); x3 |= (x3 << 16); x0 &= (uint64_t)0x0000FFFF0000FFFF; x1 &= (uint64_t)0x0000FFFF0000FFFF; x2 &= (uint64_t)0x0000FFFF0000FFFF; x3 &= (uint64_t)0x0000FFFF0000FFFF; x0 |= (x0 << 8); x1 |= (x1 << 8); x2 |= (x2 << 8); x3 |= (x3 << 8); x0 &= (uint64_t)0x00FF00FF00FF00FF; x1 &= (uint64_t)0x00FF00FF00FF00FF; x2 &= (uint64_t)0x00FF00FF00FF00FF; x3 &= (uint64_t)0x00FF00FF00FF00FF; *q0 = x0 | (x2 << 8); *q1 = x1 | (x3 << 8); } static void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1) { uint64_t x0, x1, x2, x3; x0 = q0 & (uint64_t)0x00FF00FF00FF00FF; x1 = q1 & (uint64_t)0x00FF00FF00FF00FF; x2 = (q0 >> 8) & (uint64_t)0x00FF00FF00FF00FF; x3 = (q1 >> 8) & (uint64_t)0x00FF00FF00FF00FF; x0 |= (x0 >> 8); x1 |= (x1 >> 8); x2 |= (x2 >> 8); x3 |= (x3 >> 8); x0 &= (uint64_t)0x0000FFFF0000FFFF; x1 &= (uint64_t)0x0000FFFF0000FFFF; x2 &= (uint64_t)0x0000FFFF0000FFFF; x3 &= (uint64_t)0x0000FFFF0000FFFF; w[0] = (uint32_t)x0 | (uint32_t)(x0 >> 16); w[1] = (uint32_t)x1 | (uint32_t)(x1 >> 16); w[2] = (uint32_t)x2 | (uint32_t)(x2 >> 16); w[3] = (uint32_t)x3 | (uint32_t)(x3 >> 16); } static inline void add_round_key(uint64_t *q, const uint64_t *sk) { q[0] ^= sk[0]; q[1] ^= sk[1]; q[2] ^= sk[2]; q[3] ^= sk[3]; q[4] ^= sk[4]; q[5] ^= sk[5]; q[6] ^= sk[6]; q[7] ^= sk[7]; } static inline void shift_rows(uint64_t *q) { int i; for (i = 0; i < 8; i++) { uint64_t x; x = q[i]; q[i] = (x & (uint64_t)0x000000000000FFFF) | ((x & (uint64_t)0x00000000FFF00000) >> 4) | ((x & (uint64_t)0x00000000000F0000) << 12) | ((x & (uint64_t)0x0000FF0000000000) >> 8) | ((x & (uint64_t)0x000000FF00000000) << 8) | ((x & (uint64_t)0xF000000000000000) >> 12) | ((x & (uint64_t)0x0FFF000000000000) << 4); } } static inline uint64_t rotr32(uint64_t x) { return (x << 32) | (x >> 32); } static inline void mix_columns(uint64_t *q) { uint64_t q0, q1, q2, q3, q4, q5, q6, q7; uint64_t r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >> 16) | (q0 << 48); r1 = (q1 >> 16) | (q1 << 48); r2 = (q2 >> 16) | (q2 << 48); r3 = (q3 >> 16) | (q3 << 48); r4 = (q4 >> 16) | (q4 << 48); r5 = (q5 >> 16) | (q5 << 48); r6 = (q6 >> 16) | (q6 << 48); r7 = (q7 >> 16) | (q7 << 48); q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0); q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1); q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2); q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3); q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4); q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5); q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6); q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7); } static void interleave_constant(uint64_t *out, const unsigned char *in) { uint32_t tmp_32_constant[16]; int i; br_range_dec32le(tmp_32_constant, 16, in); for (i = 0; i < 4; i++) { br_aes_ct64_interleave_in(&out[i], &out[i + 4], tmp_32_constant + (i << 2)); } br_aes_ct64_ortho(out); } static void interleave_constant32(uint32_t *out, const unsigned char *in) { int i; for (i = 0; i < 4; i++) { out[2 * i] = br_dec32le(in + 4 * i); out[2 * i + 1] = br_dec32le(in + 4 * i + 16); } br_aes_ct_ortho(out); } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_tweak_constants( const unsigned char *pk_seed, const unsigned char *sk_seed, unsigned long long seed_length) { unsigned char buf[40 * 16]; int i; /* Use the standard constants to generate tweaked ones. */ memcpy((uint8_t *)tweaked512_rc64, (uint8_t *)haraka512_rc64, 40 * 16); /* Constants for sk.seed */ if (sk_seed != NULL) { PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S( buf, 40 * 16, sk_seed, seed_length); /* Interleave constants */ for (i = 0; i < 10; i++) { interleave_constant32(tweaked256_rc32_sseed[i], buf + 32 * i); } } /* Constants for pk.seed */ PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S( buf, 40 * 16, pk_seed, seed_length); for (i = 0; i < 10; i++) { interleave_constant32(tweaked256_rc32[i], buf + 32 * i); interleave_constant(tweaked512_rc64[i], buf + 64 * i); } } static void haraka_S_absorb(unsigned char *s, unsigned int r, const unsigned char *m, unsigned long long mlen, unsigned char p) { unsigned long long i; unsigned char t[r]; while (mlen >= r) { /* XOR block to state */ for (i = 0; i < r; ++i) { s[i] ^= m[i]; } PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(s, s); mlen -= r; m += r; } for (i = 0; i < r; ++i) { t[i] = 0; } for (i = 0; i < mlen; ++i) { t[i] = m[i]; } t[i] = p; t[r - 1] |= 128; for (i = 0; i < r; ++i) { s[i] ^= t[i]; } } static void haraka_S_squeezeblocks(unsigned char *h, unsigned long long nblocks, unsigned char *s, unsigned int r) { while (nblocks > 0) { PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(s, s); memcpy(h, s, HARAKAS_RATE); h += r; nblocks--; } } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S_inc_init(uint8_t *s_inc) { size_t i; for (i = 0; i < 64; i++) { s_inc[i] = 0; } s_inc[64] = 0; } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S_inc_absorb(uint8_t *s_inc, const uint8_t *m, size_t mlen) { size_t i; /* Recall that s_inc[64] is the non-absorbed bytes xored into the state */ while (mlen + s_inc[64] >= HARAKAS_RATE) { for (i = 0; i < (size_t)(HARAKAS_RATE - s_inc[64]); i++) { /* Take the i'th byte from message xor with the s_inc[64] + i'th byte of the state */ s_inc[s_inc[64] + i] ^= m[i]; } mlen -= (size_t)(HARAKAS_RATE - s_inc[64]); m += HARAKAS_RATE - s_inc[64]; s_inc[64] = 0; PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(s_inc, s_inc); } for (i = 0; i < mlen; i++) { s_inc[s_inc[64] + i] ^= m[i]; } s_inc[64] = (uint8_t)(mlen + s_inc[64]); } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S_inc_finalize(uint8_t *s_inc) { /* After haraka_S_inc_absorb, we are guaranteed that s_inc[64] < HARAKAS_RATE, so we can always use one more byte for p in the current state. */ s_inc[s_inc[64]] ^= 0x1F; s_inc[HARAKAS_RATE - 1] ^= 128; s_inc[64] = 0; } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S_inc_squeeze(uint8_t *out, size_t outlen, uint8_t *s_inc) { uint8_t i; /* First consume any bytes we still have sitting around */ for (i = 0; i < outlen && i < s_inc[64]; i++) { /* There are s_inc[64] bytes left, so r - s_inc[64] is the first available byte. We consume from there, i.e., up to r. */ out[i] = s_inc[(HARAKAS_RATE - s_inc[64] + i)]; } out += i; outlen -= i; s_inc[64] = (uint8_t)(s_inc[64] - i); /* Then squeeze the remaining necessary blocks */ while (outlen > 0) { PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(s_inc, s_inc); for (i = 0; i < outlen && i < HARAKAS_RATE; i++) { out[i] = s_inc[i]; } out += i; outlen -= i; s_inc[64] = (uint8_t)(HARAKAS_RATE - i); } } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka_S(unsigned char *out, unsigned long long outlen, const unsigned char *in, unsigned long long inlen) { unsigned long long i; unsigned char s[64]; unsigned char d[32]; for (i = 0; i < 64; i++) { s[i] = 0; } haraka_S_absorb(s, 32, in, inlen, 0x1F); haraka_S_squeezeblocks(out, outlen / 32, s, 32); out += (outlen / 32) * 32; if (outlen % 32) { haraka_S_squeezeblocks(d, 1, s, 32); for (i = 0; i < outlen % 32; i++) { out[i] = d[i]; } } } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(unsigned char *out, const unsigned char *in) { uint32_t w[16]; uint64_t q[8], tmp_q; unsigned int i, j; br_range_dec32le(w, 16, in); for (i = 0; i < 4; i++) { br_aes_ct64_interleave_in(&q[i], &q[i + 4], w + (i << 2)); } br_aes_ct64_ortho(q); /* AES rounds */ for (i = 0; i < 5; i++) { for (j = 0; j < 2; j++) { br_aes_ct64_bitslice_Sbox(q); shift_rows(q); mix_columns(q); add_round_key(q, tweaked512_rc64[2 * i + j]); } /* Mix states */ for (j = 0; j < 8; j++) { tmp_q = q[j]; q[j] = (tmp_q & 0x0001000100010001) << 5 | (tmp_q & 0x0002000200020002) << 12 | (tmp_q & 0x0004000400040004) >> 1 | (tmp_q & 0x0008000800080008) << 6 | (tmp_q & 0x0020002000200020) << 9 | (tmp_q & 0x0040004000400040) >> 4 | (tmp_q & 0x0080008000800080) << 3 | (tmp_q & 0x2100210021002100) >> 5 | (tmp_q & 0x0210021002100210) << 2 | (tmp_q & 0x0800080008000800) << 4 | (tmp_q & 0x1000100010001000) >> 12 | (tmp_q & 0x4000400040004000) >> 10 | (tmp_q & 0x8400840084008400) >> 3; } } br_aes_ct64_ortho(q); for (i = 0; i < 4; i ++) { br_aes_ct64_interleave_out(w + (i << 2), q[i], q[i + 4]); } br_range_enc32le(out, w, 16); } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512(unsigned char *out, const unsigned char *in) { int i; unsigned char buf[64]; PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka512_perm(buf, in); /* Feed-forward */ for (i = 0; i < 64; i++) { buf[i] = buf[i] ^ in[i]; } /* Truncated */ memcpy(out, buf + 8, 8); memcpy(out + 8, buf + 24, 8); memcpy(out + 16, buf + 32, 8); memcpy(out + 24, buf + 48, 8); } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka256(unsigned char *out, const unsigned char *in) { uint32_t q[8], tmp_q; int i, j; for (i = 0; i < 4; i++) { q[2 * i] = br_dec32le(in + 4 * i); q[2 * i + 1] = br_dec32le(in + 4 * i + 16); } br_aes_ct_ortho(q); /* AES rounds */ for (i = 0; i < 5; i++) { for (j = 0; j < 2; j++) { br_aes_ct_bitslice_Sbox(q); shift_rows32(q); mix_columns32(q); add_round_key32(q, tweaked256_rc32[2 * i + j]); } /* Mix states */ for (j = 0; j < 8; j++) { tmp_q = q[j]; q[j] = (tmp_q & 0x81818181) | (tmp_q & 0x02020202) << 1 | (tmp_q & 0x04040404) << 2 | (tmp_q & 0x08080808) << 3 | (tmp_q & 0x10101010) >> 3 | (tmp_q & 0x20202020) >> 2 | (tmp_q & 0x40404040) >> 1; } } br_aes_ct_ortho(q); for (i = 0; i < 4; i++) { br_enc32le(out + 4 * i, q[2 * i]); br_enc32le(out + 4 * i + 16, q[2 * i + 1]); } for (i = 0; i < 32; i++) { out[i] ^= in[i]; } } void PQCLEAN_SPHINCSHARAKA128FROBUST_CLEAN_haraka256_sk(unsigned char *out, const unsigned char *in) { uint32_t q[8], tmp_q; int i, j; for (i = 0; i < 4; i++) { q[2 * i] = br_dec32le(in + 4 * i); q[2 * i + 1] = br_dec32le(in + 4 * i + 16); } br_aes_ct_ortho(q); /* AES rounds */ for (i = 0; i < 5; i++) { for (j = 0; j < 2; j++) { br_aes_ct_bitslice_Sbox(q); shift_rows32(q); mix_columns32(q); add_round_key32(q, tweaked256_rc32_sseed[2 * i + j]); } /* Mix states */ for (j = 0; j < 8; j++) { tmp_q = q[j]; q[j] = (tmp_q & 0x81818181) | (tmp_q & 0x02020202) << 1 | (tmp_q & 0x04040404) << 2 | (tmp_q & 0x08080808) << 3 | (tmp_q & 0x10101010) >> 3 | (tmp_q & 0x20202020) >> 2 | (tmp_q & 0x40404040) >> 1; } } br_aes_ct_ortho(q); for (i = 0; i < 4; i++) { br_enc32le(out + 4 * i, q[2 * i]); br_enc32le(out + 4 * i + 16, q[2 * i + 1]); } for (i = 0; i < 32; i++) { out[i] ^= in[i]; } }