#ifndef GF2X_ARITH_H #define GF2X_ARITH_H #include #include /* * Elements of GF(2)[x] are stored in compact dense binary form. * * Each bit in a byte is assumed to be the coefficient of a binary * polynomial f(x), in Big-Endian format (i.e., reading everything from * left to right, the most significant element is met first): * * byte:(0000 0000) == 0x00 ... f(x) == 0 * byte:(0000 0001) == 0x01 ... f(x) == 1 * byte:(0000 0010) == 0x02 ... f(x) == x * byte:(0000 0011) == 0x03 ... f(x) == x+1 * ... ... ... * byte:(0000 1111) == 0x0F ... f(x) == x^{3}+x^{2}+x+1 * ... ... ... * byte:(1111 1111) == 0xFF ... f(x) == x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 * * * A "machine word" (A_i) is considered as a DIGIT. * Bytes in a DIGIT are assumed in Big-Endian format: * E.g., if sizeof(DIGIT) == 4: * A_i: A_{i,3} A_{i,2} A_{i,1} A_{i,0}. * A_{i,3} denotes the most significant byte, A_{i,0} the least significant one. * f(x) == x^{31} + ... + x^{24} + * + x^{23} + ... + x^{16} + * + x^{15} + ... + x^{8} + * + x^{7} + ... + x^{0} * * * Multi-precision elements (i.e., with multiple DIGITs) are stored in * Big-endian format: * A = A_{n-1} A_{n-2} ... A_1 A_0 * * position[A_{n-1}] == 0 * position[A_{n-2}] == 1 * ... * position[A_{1}] == n-2 * position[A_{0}] == n-1 */ typedef uint64_t DIGIT; #define DIGIT_SIZE_B (8) #define DIGIT_SIZE_b (DIGIT_SIZE_B << 3) #define POSITION_T uint32_t #define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb static inline void gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) { for (int i = 0; i < nr; i++) { Res[i] = A[i] ^ B[i]; } } void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount); void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount); void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]); #endif