/** * \file gf2x.c * \brief Implementation of multiplication of two polynomials */ #include "gf2x.h" #include "parameters.h" #include "util.h" #include #include #define WORD_TYPE uint64_t #define WORD_TYPE_BITS (sizeof(WORD_TYPE) * 8) #define UTILS_VECTOR_ARRAY_SIZE CEIL_DIVIDE(PARAM_N, WORD_TYPE_BITS) static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v); /** * @brief A subroutine used in the function sparse_dense_mul() * * @param[out] o Pointer to an array * @param[in] v Pointer to an array * @return 0 if precomputation is successful, -1 otherwise */ static int vect_mul_precompute_rows(WORD_TYPE *o, const WORD_TYPE *v) { int8_t var; for (size_t i = 0; i < PARAM_N; ++i) { var = 0; // All the bits that we need are in the same block if (((i % WORD_TYPE_BITS) == 0) && (i != PARAM_N - (PARAM_N % WORD_TYPE_BITS))) { var = 1; } // Cases where the bits are in before the last block, the last block and the first block if (i > PARAM_N - WORD_TYPE_BITS) { if (i >= PARAM_N - (PARAM_N % WORD_TYPE_BITS)) { var = 2; } else { var = 3; } } switch (var) { case 0: // Take bits in the last block and the first one o[i] = 0; o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS); o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS)); break; case 1: o[i] = v[i / WORD_TYPE_BITS]; break; case 2: o[i] = 0; o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS); o[i] += v[0] << ((PARAM_N - i) % WORD_TYPE_BITS); break; case 3: o[i] = 0; o[i] += v[i / WORD_TYPE_BITS] >> (i % WORD_TYPE_BITS); o[i] += v[(i / WORD_TYPE_BITS) + 1] << (WORD_TYPE_BITS - (i % WORD_TYPE_BITS)); o[i] += v[0] << ((WORD_TYPE_BITS - i + (PARAM_N % WORD_TYPE_BITS)) % WORD_TYPE_BITS); break; default: return -1; } } return 0; } /** * @brief Multiplies two vectors * * This function multiplies two vectors: a sparse vector of Hamming weight equal to weight and a dense (random) vector. * The vector a1 is the sparse vector and a2 is the dense vector. * We notice that the idea is explained using vector of 32 bits elements instead of 64 (the algorithm works in booth cases). * * @param[out] o Pointer to a vector that is the result of the multiplication * @param[in] a1 Pointer to the sparse vector stored by position * @param[in] a2 Pointer to the dense vector * @param[in] weight Integer that is the weight of the sparse vector */ void PQCLEAN_HQC2562CCA2_LEAKTIME_vect_mul(uint8_t *o, const uint32_t *a1, const uint8_t *a2, uint16_t weight) { WORD_TYPE v1[UTILS_VECTOR_ARRAY_SIZE] = {0}; WORD_TYPE res[UTILS_VECTOR_ARRAY_SIZE] = {0}; WORD_TYPE precomputation_array [PARAM_N] = {0}; WORD_TYPE row [UTILS_VECTOR_ARRAY_SIZE] = {0}; uint32_t index; PQCLEAN_HQC2562CCA2_LEAKTIME_load8_arr(v1, UTILS_VECTOR_ARRAY_SIZE, a2, VEC_N_SIZE_BYTES); vect_mul_precompute_rows(precomputation_array, v1); for (size_t i = 0; i < weight; ++i) { int32_t k = UTILS_VECTOR_ARRAY_SIZE; for (size_t j = 0; j < UTILS_VECTOR_ARRAY_SIZE - 1; ++j) { index = WORD_TYPE_BITS * (uint32_t)j - a1[i]; if (index > PARAM_N) { index += PARAM_N; } row[j] = precomputation_array[index]; } index = WORD_TYPE_BITS * (UTILS_VECTOR_ARRAY_SIZE - 1) - a1[i]; row[UTILS_VECTOR_ARRAY_SIZE - 1] = precomputation_array[(index < PARAM_N ? index : index + PARAM_N)] & BITMASK(PARAM_N, WORD_TYPE_BITS); while (k--) { res[k] ^= row[k]; } } PQCLEAN_HQC2562CCA2_LEAKTIME_store8_arr(o, VEC_N_SIZE_BYTES, res, UTILS_VECTOR_ARRAY_SIZE); }