1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 07:59:01 +00:00
pqcrypto/crypto_kem/kyber1024-90s/clean/aes256ctr.c
2019-09-24 08:01:54 +02:00

633 lines
17 KiB
C

/* Code adapted from bitsliced AES in BearSSL.
*
*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "aes256ctr.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
static inline uint32_t br_dec32le(const uint8_t *src) {
return (uint32_t)src[0]
| ((uint32_t)src[1] << 8)
| ((uint32_t)src[2] << 16)
| ((uint32_t)src[3] << 24);
}
static void br_range_dec32le(uint32_t *v, size_t num, const uint8_t *src) {
while (num-- > 0) {
*v ++ = br_dec32le(src);
src += 4;
}
}
static inline uint32_t br_swap32(uint32_t x) {
x = ((x & (uint32_t)0x00FF00FF) << 8)
| ((x >> 8) & (uint32_t)0x00FF00FF);
return (x << 16) | (x >> 16);
}
static inline void br_enc32le(uint8_t *dst, uint32_t x) {
dst[0] = (uint8_t)x;
dst[1] = (uint8_t)(x >> 8);
dst[2] = (uint8_t)(x >> 16);
dst[3] = (uint8_t)(x >> 24);
}
static void br_range_enc32le(uint8_t *dst, const uint32_t *v, size_t num) {
while (num-- > 0) {
br_enc32le(dst, *v ++);
dst += 4;
}
}
static void br_aes_ct64_bitslice_Sbox(uint64_t *q) {
/*
* This S-box implementation is a straightforward translation of
* the circuit described by Boyar and Peralta in "A new
* combinational logic minimization technique with applications
* to cryptology" (https://eprint.iacr.org/2009/191.pdf).
*
* Note that variables x* (input) and s* (output) are numbered
* in "reverse" order (x0 is the high bit, x7 is the low bit).
*/
uint64_t x0, x1, x2, x3, x4, x5, x6, x7;
uint64_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
uint64_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
uint64_t y20, y21;
uint64_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
uint64_t z10, z11, z12, z13, z14, z15, z16, z17;
uint64_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
uint64_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
uint64_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
uint64_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
uint64_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
uint64_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
uint64_t t60, t61, t62, t63, t64, t65, t66, t67;
uint64_t s0, s1, s2, s3, s4, s5, s6, s7;
x0 = q[7];
x1 = q[6];
x2 = q[5];
x3 = q[4];
x4 = q[3];
x5 = q[2];
x6 = q[1];
x7 = q[0];
/*
* Top linear transformation.
*/
y14 = x3 ^ x5;
y13 = x0 ^ x6;
y9 = x0 ^ x3;
y8 = x0 ^ x5;
t0 = x1 ^ x2;
y1 = t0 ^ x7;
y4 = y1 ^ x3;
y12 = y13 ^ y14;
y2 = y1 ^ x0;
y5 = y1 ^ x6;
y3 = y5 ^ y8;
t1 = x4 ^ y12;
y15 = t1 ^ x5;
y20 = t1 ^ x1;
y6 = y15 ^ x7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = x7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = x0 ^ y16;
/*
* Non-linear section.
*/
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & x7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ t14;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ y20;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & x7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
/*
* Bottom linear transformation.
*/
t46 = z15 ^ z16;
t47 = z10 ^ z11;
t48 = z5 ^ z13;
t49 = z9 ^ z10;
t50 = z2 ^ z12;
t51 = z2 ^ z5;
t52 = z7 ^ z8;
t53 = z0 ^ z3;
t54 = z6 ^ z7;
t55 = z16 ^ z17;
t56 = z12 ^ t48;
t57 = t50 ^ t53;
t58 = z4 ^ t46;
t59 = z3 ^ t54;
t60 = t46 ^ t57;
t61 = z14 ^ t57;
t62 = t52 ^ t58;
t63 = t49 ^ t58;
t64 = z4 ^ t59;
t65 = t61 ^ t62;
t66 = z1 ^ t63;
s0 = t59 ^ t63;
s6 = t56 ^ ~t62;
s7 = t48 ^ ~t60;
t67 = t64 ^ t65;
s3 = t53 ^ t66;
s4 = t51 ^ t66;
s5 = t47 ^ t65;
s1 = t64 ^ ~s3;
s2 = t55 ^ ~t67;
q[7] = s0;
q[6] = s1;
q[5] = s2;
q[4] = s3;
q[3] = s4;
q[2] = s5;
q[1] = s6;
q[0] = s7;
}
static void br_aes_ct64_ortho(uint64_t *q) {
#define SWAPN(cl, ch, s, x, y) do { \
uint64_t a, b; \
a = (x); \
b = (y); \
(x) = (a & (uint64_t)(cl)) | ((b & (uint64_t)(cl)) << (s)); \
(y) = ((a & (uint64_t)(ch)) >> (s)) | (b & (uint64_t)(ch)); \
} while (0)
#define SWAP2(x, y) SWAPN(0x5555555555555555, 0xAAAAAAAAAAAAAAAA, 1, (x), (y))
#define SWAP4(x, y) SWAPN(0x3333333333333333, 0xCCCCCCCCCCCCCCCC, 2, (x), (y))
#define SWAP8(x, y) SWAPN(0x0F0F0F0F0F0F0F0F, 0xF0F0F0F0F0F0F0F0, 4, (x), (y))
SWAP2(q[0], q[1]);
SWAP2(q[2], q[3]);
SWAP2(q[4], q[5]);
SWAP2(q[6], q[7]);
SWAP4(q[0], q[2]);
SWAP4(q[1], q[3]);
SWAP4(q[4], q[6]);
SWAP4(q[5], q[7]);
SWAP8(q[0], q[4]);
SWAP8(q[1], q[5]);
SWAP8(q[2], q[6]);
SWAP8(q[3], q[7]);
}
static void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w) {
uint64_t x0, x1, x2, x3;
x0 = w[0];
x1 = w[1];
x2 = w[2];
x3 = w[3];
x0 |= (x0 << 16);
x1 |= (x1 << 16);
x2 |= (x2 << 16);
x3 |= (x3 << 16);
x0 &= (uint64_t)0x0000FFFF0000FFFF;
x1 &= (uint64_t)0x0000FFFF0000FFFF;
x2 &= (uint64_t)0x0000FFFF0000FFFF;
x3 &= (uint64_t)0x0000FFFF0000FFFF;
x0 |= (x0 << 8);
x1 |= (x1 << 8);
x2 |= (x2 << 8);
x3 |= (x3 << 8);
x0 &= (uint64_t)0x00FF00FF00FF00FF;
x1 &= (uint64_t)0x00FF00FF00FF00FF;
x2 &= (uint64_t)0x00FF00FF00FF00FF;
x3 &= (uint64_t)0x00FF00FF00FF00FF;
*q0 = x0 | (x2 << 8);
*q1 = x1 | (x3 << 8);
}
static void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1) {
uint64_t x0, x1, x2, x3;
x0 = q0 & (uint64_t)0x00FF00FF00FF00FF;
x1 = q1 & (uint64_t)0x00FF00FF00FF00FF;
x2 = (q0 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
x3 = (q1 >> 8) & (uint64_t)0x00FF00FF00FF00FF;
x0 |= (x0 >> 8);
x1 |= (x1 >> 8);
x2 |= (x2 >> 8);
x3 |= (x3 >> 8);
x0 &= (uint64_t)0x0000FFFF0000FFFF;
x1 &= (uint64_t)0x0000FFFF0000FFFF;
x2 &= (uint64_t)0x0000FFFF0000FFFF;
x3 &= (uint64_t)0x0000FFFF0000FFFF;
w[0] = (uint32_t)x0 | (uint32_t)(x0 >> 16);
w[1] = (uint32_t)x1 | (uint32_t)(x1 >> 16);
w[2] = (uint32_t)x2 | (uint32_t)(x2 >> 16);
w[3] = (uint32_t)x3 | (uint32_t)(x3 >> 16);
}
static const uint8_t Rcon[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
};
static uint32_t sub_word(uint32_t x) {
uint64_t q[8];
memset(q, 0, sizeof q);
q[0] = x;
br_aes_ct64_ortho(q);
br_aes_ct64_bitslice_Sbox(q);
br_aes_ct64_ortho(q);
return (uint32_t)q[0];
}
static void br_aes_ct64_keysched(uint64_t *comp_skey, const uint8_t *key) {
int i, j, k, nk, nkf;
uint32_t tmp;
uint32_t skey[60];
int key_len = 32;
nk = key_len >> 2;
nkf = (14 + 1) << 2;
br_range_dec32le(skey, (key_len >> 2), key);
tmp = skey[(key_len >> 2) - 1];
for (i = nk, j = 0, k = 0; i < nkf; i ++) {
if (j == 0) {
tmp = (tmp << 24) | (tmp >> 8);
tmp = sub_word(tmp) ^ Rcon[k];
} else if (nk > 6 && j == 4) {
tmp = sub_word(tmp);
}
tmp ^= skey[i - nk];
skey[i] = tmp;
if (++ j == nk) {
j = 0;
k ++;
}
}
for (i = 0, j = 0; i < nkf; i += 4, j += 2) {
uint64_t q[8];
br_aes_ct64_interleave_in(&q[0], &q[4], skey + i);
q[1] = q[0];
q[2] = q[0];
q[3] = q[0];
q[5] = q[4];
q[6] = q[4];
q[7] = q[4];
br_aes_ct64_ortho(q);
comp_skey[j + 0] =
(q[0] & (uint64_t)0x1111111111111111)
| (q[1] & (uint64_t)0x2222222222222222)
| (q[2] & (uint64_t)0x4444444444444444)
| (q[3] & (uint64_t)0x8888888888888888);
comp_skey[j + 1] =
(q[4] & (uint64_t)0x1111111111111111)
| (q[5] & (uint64_t)0x2222222222222222)
| (q[6] & (uint64_t)0x4444444444444444)
| (q[7] & (uint64_t)0x8888888888888888);
}
}
static void br_aes_ct64_skey_expand(uint64_t *skey, const uint64_t *comp_skey) {
unsigned int u, v, n;
n = (14 + 1) << 1;
for (u = 0, v = 0; u < n; u ++, v += 4) {
uint64_t x0, x1, x2, x3;
x0 = x1 = x2 = x3 = comp_skey[u];
x0 &= (uint64_t)0x1111111111111111;
x1 &= (uint64_t)0x2222222222222222;
x2 &= (uint64_t)0x4444444444444444;
x3 &= (uint64_t)0x8888888888888888;
x1 >>= 1;
x2 >>= 2;
x3 >>= 3;
skey[v + 0] = (x0 << 4) - x0;
skey[v + 1] = (x1 << 4) - x1;
skey[v + 2] = (x2 << 4) - x2;
skey[v + 3] = (x3 << 4) - x3;
}
}
static inline void add_round_key(uint64_t *q, const uint64_t *sk) {
q[0] ^= sk[0];
q[1] ^= sk[1];
q[2] ^= sk[2];
q[3] ^= sk[3];
q[4] ^= sk[4];
q[5] ^= sk[5];
q[6] ^= sk[6];
q[7] ^= sk[7];
}
static inline void shift_rows(uint64_t *q) {
int i;
for (i = 0; i < 8; i ++) {
uint64_t x;
x = q[i];
q[i] = (x & (uint64_t)0x000000000000FFFF)
| ((x & (uint64_t)0x00000000FFF00000) >> 4)
| ((x & (uint64_t)0x00000000000F0000) << 12)
| ((x & (uint64_t)0x0000FF0000000000) >> 8)
| ((x & (uint64_t)0x000000FF00000000) << 8)
| ((x & (uint64_t)0xF000000000000000) >> 12)
| ((x & (uint64_t)0x0FFF000000000000) << 4);
}
}
static inline uint64_t rotr32(uint64_t x) {
return (x << 32) | (x >> 32);
}
static inline void mix_columns(uint64_t *q) {
uint64_t q0, q1, q2, q3, q4, q5, q6, q7;
uint64_t r0, r1, r2, r3, r4, r5, r6, r7;
q0 = q[0];
q1 = q[1];
q2 = q[2];
q3 = q[3];
q4 = q[4];
q5 = q[5];
q6 = q[6];
q7 = q[7];
r0 = (q0 >> 16) | (q0 << 48);
r1 = (q1 >> 16) | (q1 << 48);
r2 = (q2 >> 16) | (q2 << 48);
r3 = (q3 >> 16) | (q3 << 48);
r4 = (q4 >> 16) | (q4 << 48);
r5 = (q5 >> 16) | (q5 << 48);
r6 = (q6 >> 16) | (q6 << 48);
r7 = (q7 >> 16) | (q7 << 48);
q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0);
q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1);
q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2);
q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3);
q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4);
q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5);
q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6);
q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7);
}
static void inc4_be(uint32_t *x) {
uint32_t t = br_swap32(*x) + 4;
*x = br_swap32(t);
}
static void aes_ctr4x(uint8_t out[64], uint32_t ivw[16], uint64_t sk_exp[64]) {
uint32_t w[16];
uint64_t q[8];
int i;
memcpy(w, ivw, sizeof(w));
for (i = 0; i < 4; i++) {
br_aes_ct64_interleave_in(&q[i], &q[i + 4], w + (i << 2));
}
br_aes_ct64_ortho(q);
add_round_key(q, sk_exp);
for (i = 1; i < 14; i++) {
br_aes_ct64_bitslice_Sbox(q);
shift_rows(q);
mix_columns(q);
add_round_key(q, sk_exp + (i << 3));
}
br_aes_ct64_bitslice_Sbox(q);
shift_rows(q);
add_round_key(q, sk_exp + 112);
br_aes_ct64_ortho(q);
for (i = 0; i < 4; i ++) {
br_aes_ct64_interleave_out(w + (i << 2), q[i], q[i + 4]);
}
br_range_enc32le(out, w, 16);
/* Increase counter for next 4 blocks */
inc4_be(ivw + 3);
inc4_be(ivw + 7);
inc4_be(ivw + 11);
inc4_be(ivw + 15);
}
static void br_aes_ct64_ctr_init(uint64_t sk_exp[120], const uint8_t *key) {
uint64_t skey[30];
br_aes_ct64_keysched(skey, key);
br_aes_ct64_skey_expand(sk_exp, skey);
}
static void br_aes_ct64_ctr_run(uint64_t sk_exp[120], const uint8_t *iv, uint32_t cc, uint8_t *data, size_t len) {
uint32_t ivw[16];
size_t i;
br_range_dec32le(ivw, 3, iv);
memcpy(ivw + 4, ivw, 3 * sizeof(uint32_t));
memcpy(ivw + 8, ivw, 3 * sizeof(uint32_t));
memcpy(ivw + 12, ivw, 3 * sizeof(uint32_t));
ivw[ 3] = br_swap32(cc);
ivw[ 7] = br_swap32(cc + 1);
ivw[11] = br_swap32(cc + 2);
ivw[15] = br_swap32(cc + 3);
while (len > 64) {
aes_ctr4x(data, ivw, sk_exp);
data += 64;
len -= 64;
}
if (len > 0) {
uint8_t tmp[64];
aes_ctr4x(tmp, ivw, sk_exp);
for (i = 0; i < len; i++) {
data[i] = tmp[i];
}
}
}
/*************************************************
* Name: aes256_prf
*
* Description: AES256 stream generation in CTR mode using 32-bit counter,
* nonce is zero-padded to 12 bytes, counter starts at zero
*
* Arguments: - uint8_t *output: pointer to output
* - size_t outlen: length of requested output in bytes
* - const uint8_t *key: pointer to 32-byte key
* - uint8_t nonce: 1-byte nonce (will be zero-padded to 12 bytes)
**************************************************/
void PQCLEAN_KYBER102490S_CLEAN_aes256_prf(uint8_t *output, size_t outlen, const uint8_t *key, uint8_t nonce) {
uint64_t sk_exp[120];
uint8_t iv[12];
for (int i = 1; i < 12; i++) {
iv[i] = 0;
}
iv[0] = nonce;
br_aes_ct64_ctr_init(sk_exp, key);
br_aes_ct64_ctr_run(sk_exp, iv, 0, output, outlen);
}
/*************************************************
* Name: aes256xof_absorb
*
* Description: AES256 CTR used as a replacement for a XOF; this function
* "absorbs" a 32-byte key and two additional bytes that are zero-padded
* to a 12-byte nonce
*
* Arguments: - aes256xof_ctx *s: pointer to state to "absorb" key and IV into
* - const uint8_t *key: pointer to 32-byte key
* - uint8_t x: first additional byte to "absorb"
* - uint8_t y: second additional byte to "absorb"
**************************************************/
void PQCLEAN_KYBER102490S_CLEAN_aes256xof_absorb(aes256xof_ctx *s, const uint8_t *key, uint8_t x, uint8_t y) {
uint64_t skey[30];
uint8_t iv[12];
br_aes_ct64_keysched(skey, key);
br_aes_ct64_skey_expand(s->sk_exp, skey);
for (int i = 2; i < 12; i++) {
iv[i] = 0;
}
iv[0] = x;
iv[1] = y;
br_range_dec32le(s->ivw, 3, iv);
memcpy(s->ivw + 4, s->ivw, 3 * sizeof(uint32_t));
memcpy(s->ivw + 8, s->ivw, 3 * sizeof(uint32_t));
memcpy(s->ivw + 12, s->ivw, 3 * sizeof(uint32_t));
s->ivw[ 3] = br_swap32(0);
s->ivw[ 7] = br_swap32(1);
s->ivw[11] = br_swap32(2);
s->ivw[15] = br_swap32(3);
}
/*************************************************
* Name: aes256xof_squeezeblocks
*
* Description: AES256 CTR used as a replacement for a XOF; this function
* generates 4 blocks out AES256-CTR output
*
* Arguments: - uint8_t *out: pointer to output
* - size_t nblocks: number of reqested 64-byte output blocks
* - aes256xof_ctx *s: AES "state", i.e. expanded key and IV
**************************************************/
void PQCLEAN_KYBER102490S_CLEAN_aes256xof_squeezeblocks(uint8_t *out, size_t nblocks, aes256xof_ctx *s) {
while (nblocks > 0) {
aes_ctr4x(out, s->ivw, s->sk_exp);
out += 64;
nblocks--;
}
}