1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 07:59:01 +00:00
pqcrypto/crypto_kem/frodokem976aes/clean/matrix_aes.c
Douglas Stebila 6ca367e2e6 Apply astyle
2019-04-11 08:18:49 -04:00

94 lines
3.6 KiB
C

/********************************************************************************************
* FrodoKEM: Learning with Errors Key Encapsulation
*
* Abstract: matrix arithmetic functions used by the KEM
*********************************************************************************************/
#include <stdint.h>
#include <string.h>
#include "aes.h"
#include "api.h"
#include "common.h"
#include "params.h"
int PQCLEAN_FRODOKEM976AES_CLEAN_mul_add_as_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) {
// Generate-and-multiply: generate matrix A (N x N) row-wise, multiply by s on the right.
// Inputs: s, e (N x N_BAR)
// Output: out = A*s + e (N x N_BAR)
int i, j, k;
int16_t A[PARAMS_N * PARAMS_N] = {0};
aes128ctx ctx128;
aes128_keyexp(&ctx128, seed_A);
for (i = 0; i < PARAMS_N; i++) {
for (j = 0; j < PARAMS_N; j += PARAMS_STRIPE_STEP) {
A[i * PARAMS_N + j] = (int16_t) i; // Loading values in the little-endian order
A[i * PARAMS_N + j + 1] = (int16_t) j;
}
}
for (i = 0; i < PARAMS_N * PARAMS_N; i++) {
A[i] = PQCLEAN_FRODOKEM976AES_CLEAN_UINT16_TO_LE(A[i]);
}
aes128_ecb((uint8_t *) A, (uint8_t *) A, PARAMS_N * PARAMS_N * sizeof(int16_t) / AES_BLOCKBYTES, &ctx128);
for (i = 0; i < PARAMS_N * PARAMS_N; i++) {
A[i] = PQCLEAN_FRODOKEM976AES_CLEAN_LE_TO_UINT16(A[i]);
}
memcpy(out, e, PARAMS_NBAR * PARAMS_N * sizeof(uint16_t));
for (i = 0; i < PARAMS_N; i++) { // Matrix multiplication-addition A*s + e
for (k = 0; k < PARAMS_NBAR; k++) {
uint16_t sum = 0;
for (j = 0; j < PARAMS_N; j++) {
sum += A[i * PARAMS_N + j] * s[k * PARAMS_N + j];
}
out[i * PARAMS_NBAR + k] += sum; // Adding e. No need to reduce modulo 2^15, extra bits are taken care of during packing later on.
}
}
return 1;
}
int PQCLEAN_FRODOKEM976AES_CLEAN_mul_add_sa_plus_e(uint16_t *out, const uint16_t *s, const uint16_t *e, const uint8_t *seed_A) {
// Generate-and-multiply: generate matrix A (N x N) column-wise, multiply by s' on the left.
// Inputs: s', e' (N_BAR x N)
// Output: out = s'*A + e' (N_BAR x N)
int i, j, k;
int16_t A[PARAMS_N * PARAMS_N] = {0};
aes128ctx ctx128;
aes128_keyexp(&ctx128, seed_A);
for (i = 0; i < PARAMS_N; i++) {
for (j = 0; j < PARAMS_N; j += PARAMS_STRIPE_STEP) {
A[i * PARAMS_N + j] = (int16_t) i; // Loading values in the little-endian order
A[i * PARAMS_N + j + 1] = (int16_t) j;
}
}
for (i = 0; i < PARAMS_N * PARAMS_N; i++) {
A[i] = PQCLEAN_FRODOKEM976AES_CLEAN_UINT16_TO_LE(A[i]);
}
aes128_ecb((uint8_t *) A, (uint8_t *) A, PARAMS_N * PARAMS_N * sizeof(int16_t) / AES_BLOCKBYTES, &ctx128);
for (i = 0; i < PARAMS_N * PARAMS_N; i++) {
A[i] = PQCLEAN_FRODOKEM976AES_CLEAN_LE_TO_UINT16(A[i]);
}
memcpy(out, e, PARAMS_NBAR * PARAMS_N * sizeof(uint16_t));
for (i = 0; i < PARAMS_N; i++) { // Matrix multiplication-addition A*s + e
for (k = 0; k < PARAMS_NBAR; k++) {
uint16_t sum = 0;
for (j = 0; j < PARAMS_N; j++) {
sum += A[j * PARAMS_N + i] * s[k * PARAMS_N + j];
}
out[k * PARAMS_N + i] += sum; // Adding e. No need to reduce modulo 2^15, extra bits are taken care of during packing later on.
}
}
return 1;
}