1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 16:08:59 +00:00
pqcrypto/crypto_sign/qtesla-p-I/clean/sign.c
Sebastian 56a0fcb135 qTESLA (#239)
* Copied qTESLA-p-I round2 (2019-08-19) code

* Code compiles, NIST-KAT works

* Included detached signature API

* Generated testvectors

* Fixed name in api.h

* code style

* Fixed error in Makefile

* Passing pytest

* Fixing types (uint8_t bytes and size_t indices)

* Replaced SHAKE with SHAKE128 where necessary

* Fixed bug: (signed) integer overflow

* Added qTESLA-p-III

* Code is now independent of machine endianness

* repaired Microsoft makefile
2019-10-21 14:26:27 +02:00

404 lines
15 KiB
C

/*************************************************************************************
* qTESLA: an efficient post-quantum signature scheme based on the R-LWE problem
*
* Abstract: high-level functions of the signature scheme
**************************************************************************************/
#include "api.h"
#include "fips202.h"
#include "gauss.h"
#include "pack.h"
#include "params.h"
#include "poly.h"
#include "randombytes.h"
#include "sample.h"
#include <stdlib.h>
#include <string.h>
static void hash_H(uint8_t *c_bin, const poly_k v, const uint8_t *hm) {
// Hash-based function H to generate c'
uint8_t t[PARAM_K * PARAM_N + HM_BYTES];
int32_t mask, cL, temp;
size_t i, k, index;
for (k = 0; k < PARAM_K; k++) {
index = k * PARAM_N;
for (i = 0; i < PARAM_N; i++) {
temp = (int32_t)v[index];
// If v[i] > PARAM_Q/2 then v[i] -= PARAM_Q
mask = (PARAM_Q / 2 - temp) >> (RADIX32 - 1);
temp = ((temp - PARAM_Q) & mask) | (temp & ~mask);
cL = temp & ((1 << PARAM_D) - 1);
// If cL > 2^(d-1) then cL -= 2^d
mask = ((1 << (PARAM_D - 1)) - cL) >> (RADIX32 - 1);
cL = ((cL - (1 << PARAM_D)) & mask) | (cL & ~mask);
t[index++] = (uint8_t)((temp - cL) >> PARAM_D);
}
}
memcpy(&t[PARAM_K * PARAM_N], hm, HM_BYTES);
SHAKE(c_bin, CRYPTO_C_BYTES, t, PARAM_K * PARAM_N + HM_BYTES);
}
static inline int32_t Abs(int32_t value) {
// Compute absolute value
int32_t mask = value >> (RADIX32 - 1);
return (mask ^ value) - mask;
}
static int test_rejection(const poly z) {
// Check bounds for signature vector z during signing. Returns 0 if valid, otherwise outputs 1 if invalid (rejected).
// This function does not leak any information about the coefficient that fails the test.
uint32_t valid = 0;
for (size_t i = 0; i < PARAM_N; i++) {
valid |= (PARAM_B - PARAM_S) - (uint32_t)Abs((int32_t)z[i]);
}
return (int)(valid >> 31);
}
static int test_correctness(const poly v) {
// Check bounds for w = v - ec during signature verification. Returns 0 if valid, otherwise outputs 1 if invalid (rejected).
// This function leaks the position of the coefficient that fails the test (but this is independent of the secret data).
// It does not leak the sign of the coefficients.
int32_t mask, left, val;
uint32_t t0, t1;
for (size_t i = 0; i < PARAM_N; i++) {
// If v[i] > PARAM_Q/2 then v[i] -= PARAM_Q
mask = (int32_t)(PARAM_Q / 2 - v[i]) >> (RADIX32 - 1);
val = (int32_t)(((v[i] - PARAM_Q) & mask) | (v[i] & ~mask));
// If (Abs(val) < PARAM_Q/2 - PARAM_E) then t0 = 0, else t0 = 1
t0 = (uint32_t)(~(Abs(val) - (PARAM_Q / 2 - PARAM_E))) >> (RADIX32 - 1);
left = val;
val = (val + (1 << (PARAM_D - 1)) - 1) >> PARAM_D;
val = left - (val << PARAM_D);
// If (Abs(val) < (1<<(PARAM_D-1))-PARAM_E) then t1 = 0, else t1 = 1
t1 = (uint32_t)(~(Abs(val) - ((1 << (PARAM_D - 1)) - PARAM_E))) >> (RADIX32 - 1);
if ((t0 | t1) == 1) { // Returns 1 if any of the two tests failed
return 1;
}
}
return 0;
}
static int test_z(const poly z) {
// Check bounds for signature vector z during signature verification
// Returns 0 if valid, otherwise outputs 1 if invalid (rejected)
for (size_t i = 0; i < PARAM_N; i++) {
if (z[i] < -(PARAM_B - PARAM_S) || z[i] > (PARAM_B - PARAM_S)) {
return 1;
}
}
return 0;
}
static int check_ES(poly p, unsigned int bound) {
// Checks the generated polynomial e or s
// Returns 0 if ok, otherwise returns 1
unsigned int sum = 0;
size_t i, j, limit = PARAM_N;
int32_t temp, mask, list[PARAM_N];
for (j = 0; j < PARAM_N; j++) {
list[j] = Abs((int32_t)p[j]);
}
for (j = 0; j < PARAM_H; j++) {
for (i = 0; i < limit - 1; i++) {
// If list[i+1] > list[i] then exchange contents
mask = (list[i + 1] - list[i]) >> (RADIX32 - 1);
temp = (list[i + 1] & mask) | (list[i] & ~mask);
list[i + 1] = (list[i] & mask) | (list[i + 1] & ~mask);
list[i] = temp;
}
sum += (unsigned int)list[limit - 1];
limit -= 1;
}
if (sum > bound) {
return 1;
}
return 0;
}
/*********************************************************
* Name: crypto_sign_keypair
* Description: generates a public and private key pair
* Parameters: inputs: none
* outputs:
* - uint8_t *pk: public key
* - uint8_t *sk: secret key
* Returns: 0 for successful execution
**********************************************************/
int PQCLEAN_QTESLAPI_CLEAN_crypto_sign_keypair(uint8_t *pk, uint8_t *sk) {
uint8_t randomness[CRYPTO_RANDOMBYTES], randomness_extended[(PARAM_K + 3)*CRYPTO_SEEDBYTES];
poly s, s_ntt;
poly_k e, a, t;
size_t k; // Initialize domain separator for error and secret polynomials
uint16_t nonce = 0;
// Get randomness_extended <- seed_e, seed_s, seed_a, seed_y
randombytes(randomness, CRYPTO_RANDOMBYTES);
SHAKE(randomness_extended, (PARAM_K + 3)*CRYPTO_SEEDBYTES, randomness, CRYPTO_RANDOMBYTES);
for (k = 0; k < PARAM_K; k++) {
do { // Sample the error polynomials
PQCLEAN_QTESLAPI_CLEAN_sample_gauss_poly(&e[k * PARAM_N], &randomness_extended[k * CRYPTO_SEEDBYTES], ++nonce);
} while (check_ES(&e[k * PARAM_N], PARAM_KEYGEN_BOUND_E) != 0);
}
do { // Sample the secret polynomial
PQCLEAN_QTESLAPI_CLEAN_sample_gauss_poly(s, &randomness_extended[PARAM_K * CRYPTO_SEEDBYTES], ++nonce);
} while (check_ES(s, PARAM_KEYGEN_BOUND_S) != 0);
// Generate uniform polynomial "a"
PQCLEAN_QTESLAPI_CLEAN_poly_uniform(a, &randomness_extended[(PARAM_K + 1)*CRYPTO_SEEDBYTES]);
PQCLEAN_QTESLAPI_CLEAN_poly_ntt(s_ntt, s);
// Compute the public key t = as+e
for (k = 0; k < PARAM_K; k++) {
PQCLEAN_QTESLAPI_CLEAN_poly_mul(&t[k * PARAM_N], &a[k * PARAM_N], s_ntt);
PQCLEAN_QTESLAPI_CLEAN_poly_add_correct(&t[k * PARAM_N], &t[k * PARAM_N], &e[k * PARAM_N]);
}
// Pack public and private keys
PQCLEAN_QTESLAPI_CLEAN_pack_sk(sk, s, e, &randomness_extended[(PARAM_K + 1)*CRYPTO_SEEDBYTES]);
PQCLEAN_QTESLAPI_CLEAN_encode_pk(pk, t, &randomness_extended[(PARAM_K + 1)*CRYPTO_SEEDBYTES]);
return 0;
}
/***************************************************************
* Name: crypto_sign
* Description: outputs a signature for a given message m
* Parameters: inputs:
* - const uint8_t *m: message to be signed
* - size_t mlen: message length
* - const uint8_t* sk: secret key
* outputs:
* - uint8_t *sm: signature
* - size_t *smlen: signature length*
* Returns: 0 for successful execution
***************************************************************/
int PQCLEAN_QTESLAPI_CLEAN_crypto_sign(uint8_t *sm, size_t *smlen, const uint8_t *m, size_t mlen, const uint8_t *sk) {
uint8_t c[CRYPTO_C_BYTES], randomness[CRYPTO_SEEDBYTES], randomness_input[CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES + HM_BYTES];
uint32_t pos_list[PARAM_H];
int16_t sign_list[PARAM_H];
poly y, y_ntt, Sc, z;
poly_k v, Ec, a;
size_t k;
int rsp;
uint16_t nonce = 0; // Initialize domain separator for sampling y
// Get H(seed_y, r, H(m)) to sample y
randombytes(randomness_input + CRYPTO_RANDOMBYTES, CRYPTO_RANDOMBYTES);
memcpy(randomness_input, &sk[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_SECRETKEYBYTES - CRYPTO_SEEDBYTES], CRYPTO_SEEDBYTES);
SHAKE(randomness_input + CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES, HM_BYTES, m, mlen);
SHAKE(randomness, CRYPTO_SEEDBYTES, randomness_input, CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES + HM_BYTES);
PQCLEAN_QTESLAPI_CLEAN_poly_uniform(a, &sk[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_SECRETKEYBYTES - 2 * CRYPTO_SEEDBYTES]);
while (1) {
PQCLEAN_QTESLAPI_CLEAN_sample_y(y, randomness, ++nonce); // Sample y uniformly at random from [-B,B]
PQCLEAN_QTESLAPI_CLEAN_poly_ntt (y_ntt, y);
for (k = 0; k < PARAM_K; k++) {
PQCLEAN_QTESLAPI_CLEAN_poly_mul(&v[k * PARAM_N], &a[k * PARAM_N], y_ntt);
}
hash_H(c, v, randomness_input + CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES);
PQCLEAN_QTESLAPI_CLEAN_encode_c(pos_list, sign_list, c); // Generate c = Enc(c'), where c' is the hashing of v together with m
PQCLEAN_QTESLAPI_CLEAN_sparse_mul8(Sc, sk, pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_add(z, y, Sc); // Compute z = y + sc
if (test_rejection(z) != 0) { // Rejection sampling
continue;
}
for (k = 0; k < PARAM_K; k++) {
PQCLEAN_QTESLAPI_CLEAN_sparse_mul8(&Ec[k * PARAM_N], sk + (sizeof(int8_t)*PARAM_N * (k + 1)), pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_sub(&v[k * PARAM_N], &v[k * PARAM_N], &Ec[k * PARAM_N]);
rsp = test_correctness(&v[k * PARAM_N]);
if (rsp != 0) {
break;
}
}
if (rsp != 0) {
continue;
}
// Copy message to signature package, and pack signature
for (size_t i = 0; i < mlen; i++) {
sm[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES + i] = m[i];
}
*smlen = PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES + mlen;
PQCLEAN_QTESLAPI_CLEAN_encode_sig(sm, c, z);
return 0;
}
}
/************************************************************
* Name: crypto_sign_open
* Description: verification of a signature sm
* Parameters: inputs:
* - const uint8_t *sm: signature
* - size_t smlen: signature length
* - const uint8_t* pk: public Key
* outputs:
* - uint8_t *m: original (signed) message
* - size_t *mlen: message length*
* Returns: 0 for valid signature
* <0 for invalid signature
************************************************************/
int PQCLEAN_QTESLAPI_CLEAN_crypto_sign_open(uint8_t *m, size_t *mlen, const uint8_t *sm, size_t smlen, const uint8_t *pk) {
uint8_t c[CRYPTO_C_BYTES], c_sig[CRYPTO_C_BYTES], seed[CRYPTO_SEEDBYTES], hm[HM_BYTES];
uint32_t pos_list[PARAM_H];
int16_t sign_list[PARAM_H];
int32_t pk_t[PARAM_N * PARAM_K];
poly_k w, a, Tc;
poly z, z_ntt;
size_t k;
if (smlen < PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES) {
return -1;
}
PQCLEAN_QTESLAPI_CLEAN_decode_sig(c, z, sm);
if (test_z(z) != 0) {
return -2; // Check norm of z
}
PQCLEAN_QTESLAPI_CLEAN_decode_pk(pk_t, seed, pk);
PQCLEAN_QTESLAPI_CLEAN_poly_uniform(a, seed);
PQCLEAN_QTESLAPI_CLEAN_encode_c(pos_list, sign_list, c);
PQCLEAN_QTESLAPI_CLEAN_poly_ntt(z_ntt, z);
for (k = 0; k < PARAM_K; k++) { // Compute w = az - tc
PQCLEAN_QTESLAPI_CLEAN_sparse_mul32(&Tc[k * PARAM_N], &pk_t[k * PARAM_N], pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_mul(&w[k * PARAM_N], &a[k * PARAM_N], z_ntt);
PQCLEAN_QTESLAPI_CLEAN_poly_sub(&w[k * PARAM_N], &w[k * PARAM_N], &Tc[k * PARAM_N]);
}
SHAKE(hm, HM_BYTES, sm + PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES, smlen - PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES);
hash_H(c_sig, w, hm);
// Check if the calculated c matches c from the signature
if (memcmp(c, c_sig, CRYPTO_C_BYTES) != 0) {
return -3;
}
*mlen = smlen - PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES;
for (size_t i = 0; i < *mlen; i++) {
m[i] = sm[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES + i];
}
return 0;
}
int PQCLEAN_QTESLAPI_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen,
const uint8_t *sk) {
uint8_t c[CRYPTO_C_BYTES], randomness[CRYPTO_SEEDBYTES], randomness_input[CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES + HM_BYTES];
uint32_t pos_list[PARAM_H];
int16_t sign_list[PARAM_H];
poly y, y_ntt, Sc, z;
poly_k v, Ec, a;
size_t k;
int rsp;
uint16_t nonce = 0; // Initialize domain separator for sampling y
// Get H(seed_y, r, H(m)) to sample y
randombytes(randomness_input + CRYPTO_RANDOMBYTES, CRYPTO_RANDOMBYTES);
memcpy(randomness_input, &sk[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_SECRETKEYBYTES - CRYPTO_SEEDBYTES], CRYPTO_SEEDBYTES);
SHAKE(randomness_input + CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES, HM_BYTES, m, mlen);
SHAKE(randomness, CRYPTO_SEEDBYTES, randomness_input, CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES + HM_BYTES);
PQCLEAN_QTESLAPI_CLEAN_poly_uniform(a, &sk[PQCLEAN_QTESLAPI_CLEAN_CRYPTO_SECRETKEYBYTES - 2 * CRYPTO_SEEDBYTES]);
while (1) {
PQCLEAN_QTESLAPI_CLEAN_sample_y(y, randomness, ++nonce); // Sample y uniformly at random from [-B,B]
PQCLEAN_QTESLAPI_CLEAN_poly_ntt (y_ntt, y);
for (k = 0; k < PARAM_K; k++) {
PQCLEAN_QTESLAPI_CLEAN_poly_mul(&v[k * PARAM_N], &a[k * PARAM_N], y_ntt);
}
hash_H(c, v, randomness_input + CRYPTO_RANDOMBYTES + CRYPTO_SEEDBYTES);
PQCLEAN_QTESLAPI_CLEAN_encode_c(pos_list, sign_list, c); // Generate c = Enc(c'), where c' is the hashing of v together with m
PQCLEAN_QTESLAPI_CLEAN_sparse_mul8(Sc, sk, pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_add(z, y, Sc); // Compute z = y + sc
if (test_rejection(z) != 0) { // Rejection sampling
continue;
}
for (k = 0; k < PARAM_K; k++) {
PQCLEAN_QTESLAPI_CLEAN_sparse_mul8(&Ec[k * PARAM_N], sk + (sizeof(int8_t)*PARAM_N * (k + 1)), pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_sub(&v[k * PARAM_N], &v[k * PARAM_N], &Ec[k * PARAM_N]);
rsp = test_correctness(&v[k * PARAM_N]);
if (rsp != 0) {
break;
}
}
if (rsp != 0) {
continue;
}
// pack signature
*siglen = PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES;
PQCLEAN_QTESLAPI_CLEAN_encode_sig(sig, c, z);
return 0;
}
}
int PQCLEAN_QTESLAPI_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen,
const uint8_t *pk) {
uint8_t c[CRYPTO_C_BYTES], c_sig[CRYPTO_C_BYTES], seed[CRYPTO_SEEDBYTES], hm[HM_BYTES];
uint32_t pos_list[PARAM_H];
int16_t sign_list[PARAM_H];
int32_t pk_t[PARAM_N * PARAM_K];
poly_k w, a, Tc;
poly z, z_ntt;
size_t k;
if (siglen < PQCLEAN_QTESLAPI_CLEAN_CRYPTO_BYTES) {
return -1;
}
PQCLEAN_QTESLAPI_CLEAN_decode_sig(c, z, sig);
if (test_z(z) != 0) {
return -2; // Check norm of z
}
PQCLEAN_QTESLAPI_CLEAN_decode_pk(pk_t, seed, pk);
PQCLEAN_QTESLAPI_CLEAN_poly_uniform(a, seed);
PQCLEAN_QTESLAPI_CLEAN_encode_c(pos_list, sign_list, c);
PQCLEAN_QTESLAPI_CLEAN_poly_ntt(z_ntt, z);
for (k = 0; k < PARAM_K; k++) { // Compute w = az - tc
PQCLEAN_QTESLAPI_CLEAN_sparse_mul32(&Tc[k * PARAM_N], &pk_t[k * PARAM_N], pos_list, sign_list);
PQCLEAN_QTESLAPI_CLEAN_poly_mul(&w[k * PARAM_N], &a[k * PARAM_N], z_ntt);
PQCLEAN_QTESLAPI_CLEAN_poly_sub(&w[k * PARAM_N], &w[k * PARAM_N], &Tc[k * PARAM_N]);
}
SHAKE(hm, HM_BYTES, m, mlen);
hash_H(c_sig, w, hm);
// Check if the calculated c matches c from the signature
if (memcmp(c, c_sig, CRYPTO_C_BYTES) != 0) {
return -3;
}
return 0;
}