mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-23 16:08:59 +00:00
663 lines
20 KiB
C
663 lines
20 KiB
C
#include "fft.h"
|
|
#include "gf.h"
|
|
#include "parameters.h"
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
/**
|
|
* @file fft.c
|
|
* Implementation of the additive FFT and its transpose.
|
|
* This implementation is based on the paper from Gao and Mateer: <br>
|
|
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
|
|
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
|
|
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
|
|
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf
|
|
*/
|
|
|
|
|
|
static void compute_fft_betas(uint16_t *betas);
|
|
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, uint16_t set_size);
|
|
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
|
|
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f);
|
|
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
|
|
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
|
|
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f);
|
|
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas);
|
|
|
|
|
|
/**
|
|
* @brief Computes the basis of betas (omitting 1) used in the additive FFT and its transpose
|
|
*
|
|
* @param[out] betas Array of size PARAM_M-1
|
|
*/
|
|
static void compute_fft_betas(uint16_t *betas) {
|
|
size_t i;
|
|
for (i = 0; i < PARAM_M - 1; ++i) {
|
|
betas[i] = 1 << (PARAM_M - 1 - i);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Computes the subset sums of the given set
|
|
*
|
|
* The array subset_sums is such that its ith element is
|
|
* the subset sum of the set elements given by the binary form of i.
|
|
*
|
|
* @param[out] subset_sums Array of size 2^set_size receiving the subset sums
|
|
* @param[in] set Array of set_size elements
|
|
* @param[in] set_size Size of the array set
|
|
*/
|
|
static void compute_subset_sums(uint16_t *subset_sums, const uint16_t *set, uint16_t set_size) {
|
|
uint16_t i, j;
|
|
subset_sums[0] = 0;
|
|
|
|
for (i = 0; i < set_size; ++i) {
|
|
for (j = 0; j < (1 << i); ++j) {
|
|
subset_sums[(1 << i) + j] = set[i] ^ subset_sums[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Transpose of the linear radix conversion
|
|
*
|
|
* This is a direct transposition of the radix function
|
|
* implemented following the process of transposing a linear function as exposed by Bernstein, Chou and Schwabe here:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf
|
|
*
|
|
* @param[out] f Array of size a power of 2
|
|
* @param[in] f0 Array half the size of f
|
|
* @param[in] f1 Array half the size of f
|
|
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
|
|
*/
|
|
static void radix_t(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
|
|
switch (m_f) {
|
|
case 4:
|
|
f[0] = f0[0];
|
|
f[1] = f1[0];
|
|
f[2] = f0[1] ^ f1[0];
|
|
f[3] = f[2] ^ f1[1];
|
|
f[4] = f[2] ^ f0[2];
|
|
f[5] = f[3] ^ f1[2];
|
|
f[6] = f[4] ^ f0[3] ^ f1[2];
|
|
f[7] = f[3] ^ f0[3] ^ f1[3];
|
|
f[8] = f[4] ^ f0[4];
|
|
f[9] = f[5] ^ f1[4];
|
|
f[10] = f[6] ^ f0[5] ^ f1[4];
|
|
f[11] = f[7] ^ f0[5] ^ f1[4] ^ f1[5];
|
|
f[12] = f[8] ^ f0[5] ^ f0[6] ^ f1[4];
|
|
f[13] = f[7] ^ f[9] ^ f[11] ^ f1[6];
|
|
f[14] = f[6] ^ f0[6] ^ f0[7] ^ f1[6];
|
|
f[15] = f[7] ^ f0[7] ^ f1[7];
|
|
break;
|
|
|
|
case 3:
|
|
f[0] = f0[0];
|
|
f[1] = f1[0];
|
|
f[2] = f0[1] ^ f1[0];
|
|
f[3] = f[2] ^ f1[1];
|
|
f[4] = f[2] ^ f0[2];
|
|
f[5] = f[3] ^ f1[2];
|
|
f[6] = f[4] ^ f0[3] ^ f1[2];
|
|
f[7] = f[3] ^ f0[3] ^ f1[3];
|
|
break;
|
|
|
|
case 2:
|
|
f[0] = f0[0];
|
|
f[1] = f1[0];
|
|
f[2] = f0[1] ^ f1[0];
|
|
f[3] = f[2] ^ f1[1];
|
|
break;
|
|
|
|
case 1:
|
|
f[0] = f0[0];
|
|
f[1] = f1[0];
|
|
break;
|
|
|
|
default:
|
|
radix_t_big(f, f0, f1, m_f);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void radix_t_big(uint16_t *f, const uint16_t *f0, const uint16_t *f1, uint32_t m_f) {
|
|
uint16_t Q0[1 << (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t Q1[1 << (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t R0[1 << (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t R1[1 << (PARAM_FFT_T - 2)] = {0};
|
|
|
|
uint16_t Q[1 << 2 * (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t R[1 << 2 * (PARAM_FFT_T - 2)] = {0};
|
|
|
|
uint16_t n;
|
|
size_t i;
|
|
|
|
n = 1 << (m_f - 2);
|
|
memcpy(Q0, f0 + n, 2 * n);
|
|
memcpy(Q1, f1 + n, 2 * n);
|
|
memcpy(R0, f0, 2 * n);
|
|
memcpy(R1, f1, 2 * n);
|
|
|
|
radix_t (Q, Q0, Q1, m_f - 1);
|
|
radix_t (R, R0, R1, m_f - 1);
|
|
|
|
memcpy(f, R, 4 * n);
|
|
memcpy(f + 2 * n, R + n, 2 * n);
|
|
memcpy(f + 3 * n, Q + n, 2 * n);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
f[2 * n + i] ^= Q[i];
|
|
f[3 * n + i] ^= f[2 * n + i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Recursively computes syndromes of family w
|
|
*
|
|
* This function is a subroutine of the function fft_t
|
|
*
|
|
* @param[out] f Array receiving the syndromes
|
|
* @param[in] w Array storing the family
|
|
* @param[in] f_coeffs Length of syndromes vector
|
|
* @param[in] m 2^m is the smallest power of 2 greater or equal to the length of family w
|
|
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the length of f
|
|
* @param[in] betas FFT constants
|
|
*/
|
|
static void fft_t_rec(uint16_t *f, const uint16_t *w, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
|
|
uint16_t gammas[PARAM_M - 2] = {0};
|
|
uint16_t deltas[PARAM_M - 2] = {0};
|
|
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t u[1 << (PARAM_M - 2)] = {0};
|
|
uint16_t f0[1 << (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t f1[1 << (PARAM_FFT_T - 2)] = {0};
|
|
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t v[1 << (PARAM_M - 2)] = {0};
|
|
uint16_t beta_m_pow;
|
|
|
|
size_t i, j, k;
|
|
size_t x;
|
|
|
|
// Step 1
|
|
if (m_f == 1) {
|
|
f[0] = 0;
|
|
x = 1 << m;
|
|
for (i = 0; i < x; ++i) {
|
|
f[0] ^= w[i];
|
|
}
|
|
f[1] = 0;
|
|
|
|
betas_sums[0] = 0;
|
|
x = 1;
|
|
for (j = 0; j < m; ++j) {
|
|
for (k = 0; k < x; ++k) {
|
|
betas_sums[x + k] = betas_sums[k] ^ betas[j];
|
|
f[1] ^= PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[x + k], w[x + k]);
|
|
}
|
|
x <<= 1;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Compute gammas and deltas
|
|
for (i = 0; i + 1 < m; ++i) {
|
|
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1]));
|
|
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i];
|
|
}
|
|
|
|
// Compute gammas subset sums
|
|
compute_subset_sums(gammas_sums, gammas, m - 1);
|
|
|
|
/* Step 6: Compute u and v from w (aka w)
|
|
* w[i] = u[i] + G[i].v[i]
|
|
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
|
|
* Transpose:
|
|
* u[i] = w[i] + w[k+i]
|
|
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
|
|
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
|
|
if (f_coeffs <= 3) { // 3-coefficient polynomial f case
|
|
// Step 5: Compute f0 from u and f1 from v
|
|
f1[1] = 0;
|
|
u[0] = w[0] ^ w[k];
|
|
f1[0] = w[k];
|
|
for (i = 1; i < k; ++i) {
|
|
u[i] = w[i] ^ w[k + i];
|
|
f1[0] ^= PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
|
|
}
|
|
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
|
|
} else {
|
|
u[0] = w[0] ^ w[k];
|
|
v[0] = w[k];
|
|
|
|
for (i = 1; i < k; ++i) {
|
|
u[i] = w[i] ^ w[k + i];
|
|
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], u[i]) ^ w[k + i];
|
|
}
|
|
|
|
// Step 5: Compute f0 from u and f1 from v
|
|
fft_t_rec(f0, u, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
|
|
fft_t_rec(f1, v, f_coeffs / 2, m - 1, m_f - 1, deltas);
|
|
}
|
|
|
|
// Step 3: Compute g from g0 and g1
|
|
radix_t(f, f0, f1, m_f);
|
|
|
|
// Step 2: compute f from g
|
|
if (betas[m - 1] != 1) {
|
|
beta_m_pow = 1;
|
|
x = 1 << m_f;
|
|
for (i = 1; i < x; ++i) {
|
|
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
|
|
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Computes the syndromes f of the family w
|
|
*
|
|
* Since the syndromes linear map is the transpose of multipoint evaluation,
|
|
* it uses exactly the same constants, either hardcoded or precomputed by compute_fft_lut(...). <br>
|
|
* This follows directives from Bernstein, Chou and Schwabe given here:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf
|
|
*
|
|
* @param[out] f Array of size 2*(PARAM_FFT_T) elements receiving the syndromes
|
|
* @param[in] w Array of PARAM_GF_MUL_ORDER+1 elements
|
|
* @param[in] f_coeffs Length of syndromes vector f
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_fft_t(uint16_t *f, const uint16_t *w, size_t f_coeffs) {
|
|
// Transposed from Gao and Mateer algorithm
|
|
uint16_t betas[PARAM_M - 1] = {0};
|
|
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t u[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t v[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t deltas[PARAM_M - 1] = {0};
|
|
uint16_t f0[1 << (PARAM_FFT_T - 1)] = {0};
|
|
uint16_t f1[1 << (PARAM_FFT_T - 1)] = {0};
|
|
|
|
size_t i, k;
|
|
|
|
compute_fft_betas(betas);
|
|
compute_subset_sums(betas_sums, betas, PARAM_M - 1);
|
|
|
|
/* Step 6: Compute u and v from w (aka w)
|
|
*
|
|
* We had:
|
|
* w[i] = u[i] + G[i].v[i]
|
|
* w[k+i] = w[i] + v[i] = u[i] + (G[i]+1).v[i]
|
|
* Transpose:
|
|
* u[i] = w[i] + w[k+i]
|
|
* v[i] = G[i].w[i] + (G[i]+1).w[k+i] = G[i].u[i] + w[k+i] */
|
|
k = 1 << (PARAM_M - 1);
|
|
u[0] = w[0] ^ w[k];
|
|
v[0] = w[k];
|
|
for (i = 1; i < k; ++i) {
|
|
u[i] = w[i] ^ w[k + i];
|
|
v[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], u[i]) ^ w[k + i];
|
|
}
|
|
|
|
// Compute deltas
|
|
for (i = 0; i < PARAM_M - 1; ++i) {
|
|
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i];
|
|
}
|
|
|
|
// Step 5: Compute f0 from u and f1 from v
|
|
fft_t_rec(f0, u, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
|
|
fft_t_rec(f1, v, f_coeffs / 2, PARAM_M - 1, PARAM_FFT_T - 1, deltas);
|
|
|
|
// Step 3: Compute g from g0 and g1
|
|
radix_t(f, f0, f1, PARAM_FFT_T);
|
|
|
|
// Step 2: beta_m = 1 so f = g
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Computes the radix conversion of a polynomial f in GF(2^m)[x]
|
|
*
|
|
* Computes f0 and f1 such that f(x) = f0(x^2-x) + x.f1(x^2-x)
|
|
* as proposed by Bernstein, Chou and Schwabe:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf
|
|
*
|
|
* @param[out] f0 Array half the size of f
|
|
* @param[out] f1 Array half the size of f
|
|
* @param[in] f Array of size a power of 2
|
|
* @param[in] m_f 2^{m_f} is the smallest power of 2 greater or equal to the number of coefficients of f
|
|
*/
|
|
static void radix(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
|
|
switch (m_f) {
|
|
case 4:
|
|
f0[4] = f[8] ^ f[12];
|
|
f0[6] = f[12] ^ f[14];
|
|
f0[7] = f[14] ^ f[15];
|
|
f1[5] = f[11] ^ f[13];
|
|
f1[6] = f[13] ^ f[14];
|
|
f1[7] = f[15];
|
|
f0[5] = f[10] ^ f[12] ^ f1[5];
|
|
f1[4] = f[9] ^ f[13] ^ f0[5];
|
|
|
|
f0[0] = f[0];
|
|
f1[3] = f[7] ^ f[11] ^ f[15];
|
|
f0[3] = f[6] ^ f[10] ^ f[14] ^ f1[3];
|
|
f0[2] = f[4] ^ f0[4] ^ f0[3] ^ f1[3];
|
|
f1[1] = f[3] ^ f[5] ^ f[9] ^ f[13] ^ f1[3];
|
|
f1[2] = f[3] ^ f1[1] ^ f0[3];
|
|
f0[1] = f[2] ^ f0[2] ^ f1[1];
|
|
f1[0] = f[1] ^ f0[1];
|
|
break;
|
|
|
|
case 3:
|
|
f0[0] = f[0];
|
|
f0[2] = f[4] ^ f[6];
|
|
f0[3] = f[6] ^ f[7];
|
|
f1[1] = f[3] ^ f[5] ^ f[7];
|
|
f1[2] = f[5] ^ f[6];
|
|
f1[3] = f[7];
|
|
f0[1] = f[2] ^ f0[2] ^ f1[1];
|
|
f1[0] = f[1] ^ f0[1];
|
|
break;
|
|
|
|
case 2:
|
|
f0[0] = f[0];
|
|
f0[1] = f[2] ^ f[3];
|
|
f1[0] = f[1] ^ f0[1];
|
|
f1[1] = f[3];
|
|
break;
|
|
|
|
case 1:
|
|
f0[0] = f[0];
|
|
f1[0] = f[1];
|
|
break;
|
|
|
|
default:
|
|
radix_big(f0, f1, f, m_f);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void radix_big(uint16_t *f0, uint16_t *f1, const uint16_t *f, uint32_t m_f) {
|
|
uint16_t Q[2 * (1 << (PARAM_FFT - 2))] = {0};
|
|
uint16_t R[2 * (1 << (PARAM_FFT - 2))] = {0};
|
|
|
|
uint16_t Q0[1 << (PARAM_FFT - 2)] = {0};
|
|
uint16_t Q1[1 << (PARAM_FFT - 2)] = {0};
|
|
uint16_t R0[1 << (PARAM_FFT - 2)] = {0};
|
|
uint16_t R1[1 << (PARAM_FFT - 2)] = {0};
|
|
|
|
size_t i, n;
|
|
|
|
n = 1 << (m_f - 2);
|
|
memcpy(Q, f + 3 * n, 2 * n);
|
|
memcpy(Q + n, f + 3 * n, 2 * n);
|
|
memcpy(R, f, 4 * n);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
Q[i] ^= f[2 * n + i];
|
|
R[n + i] ^= Q[i];
|
|
}
|
|
|
|
radix(Q0, Q1, Q, m_f - 1);
|
|
radix(R0, R1, R, m_f - 1);
|
|
|
|
memcpy(f0, R0, 2 * n);
|
|
memcpy(f0 + n, Q0, 2 * n);
|
|
memcpy(f1, R1, 2 * n);
|
|
memcpy(f1 + n, Q1, 2 * n);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Evaluates f at all subset sums of a given set
|
|
*
|
|
* This function is a subroutine of the function fft.
|
|
*
|
|
* @param[out] w Array
|
|
* @param[in] f Array
|
|
* @param[in] f_coeffs Number of coefficients of f
|
|
* @param[in] m Number of betas
|
|
* @param[in] m_f Number of coefficients of f (one more than its degree)
|
|
* @param[in] betas FFT constants
|
|
*/
|
|
static void fft_rec(uint16_t *w, uint16_t *f, size_t f_coeffs, uint8_t m, uint32_t m_f, const uint16_t *betas) {
|
|
uint16_t f0[1 << (PARAM_FFT - 2)] = {0};
|
|
uint16_t f1[1 << (PARAM_FFT - 2)] = {0};
|
|
uint16_t gammas[PARAM_M - 2] = {0};
|
|
uint16_t deltas[PARAM_M - 2] = {0};
|
|
uint16_t gammas_sums[1 << (PARAM_M - 2)] = {0};
|
|
uint16_t u[1 << (PARAM_M - 2)] = {0};
|
|
uint16_t v[1 << (PARAM_M - 2)] = {0};
|
|
uint16_t tmp[PARAM_M - (PARAM_FFT - 1)] = {0};
|
|
|
|
uint16_t beta_m_pow;
|
|
size_t i, j, k;
|
|
size_t x;
|
|
|
|
// Step 1
|
|
if (m_f == 1) {
|
|
for (i = 0; i < m; ++i) {
|
|
tmp[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], f[1]);
|
|
}
|
|
|
|
w[0] = f[0];
|
|
x = 1;
|
|
for (j = 0; j < m; ++j) {
|
|
for (k = 0; k < x; ++k) {
|
|
w[x + k] = w[k] ^ tmp[j];
|
|
}
|
|
x <<= 1;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Step 2: compute g
|
|
if (betas[m - 1] != 1) {
|
|
beta_m_pow = 1;
|
|
x = 1 << m_f;
|
|
for (i = 1; i < x; ++i) {
|
|
beta_m_pow = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, betas[m - 1]);
|
|
f[i] = PQCLEAN_HQC256_CLEAN_gf_mul(beta_m_pow, f[i]);
|
|
}
|
|
}
|
|
|
|
// Step 3
|
|
radix(f0, f1, f, m_f);
|
|
|
|
// Step 4: compute gammas and deltas
|
|
for (i = 0; i + 1 < m; ++i) {
|
|
gammas[i] = PQCLEAN_HQC256_CLEAN_gf_mul(betas[i], PQCLEAN_HQC256_CLEAN_gf_inverse(betas[m - 1]));
|
|
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(gammas[i]) ^ gammas[i];
|
|
}
|
|
|
|
// Compute gammas sums
|
|
compute_subset_sums(gammas_sums, gammas, m - 1);
|
|
|
|
// Step 5
|
|
fft_rec(u, f0, (f_coeffs + 1) / 2, m - 1, m_f - 1, deltas);
|
|
|
|
k = 1 << ((m - 1) & 0xf); // &0xf is to let the compiler know that m-1 is small.
|
|
if (f_coeffs <= 3) { // 3-coefficient polynomial f case: f1 is constant
|
|
w[0] = u[0];
|
|
w[k] = u[0] ^ f1[0];
|
|
for (i = 1; i < k; ++i) {
|
|
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], f1[0]);
|
|
w[k + i] = w[i] ^ f1[0];
|
|
}
|
|
} else {
|
|
fft_rec(v, f1, f_coeffs / 2, m - 1, m_f - 1, deltas);
|
|
|
|
// Step 6
|
|
memcpy(w + k, v, 2 * k);
|
|
w[0] = u[0];
|
|
w[k] ^= u[0];
|
|
for (i = 1; i < k; ++i) {
|
|
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(gammas_sums[i], v[i]);
|
|
w[k + i] ^= w[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Evaluates f on all fields elements using an additive FFT algorithm
|
|
*
|
|
* f_coeffs is the number of coefficients of f (one less than its degree). <br>
|
|
* The FFT proceeds recursively to evaluate f at all subset sums of a basis B. <br>
|
|
* This implementation is based on the paper from Gao and Mateer: <br>
|
|
* Shuhong Gao and Todd Mateer, Additive Fast Fourier Transforms over Finite Fields,
|
|
* IEEE Transactions on Information Theory 56 (2010), 6265--6272.
|
|
* http://www.math.clemson.edu/~sgao/papers/GM10.pdf <br>
|
|
* and includes improvements proposed by Bernstein, Chou and Schwabe here:
|
|
* https://binary.cr.yp.to/mcbits-20130616.pdf <br>
|
|
* Note that on this first call (as opposed to the recursive calls to fft_rec), gammas are equal to betas,
|
|
* meaning the first gammas subset sums are actually the subset sums of betas (except 1). <br>
|
|
* Also note that f is altered during computation (twisted at each level).
|
|
*
|
|
* @param[out] w Array
|
|
* @param[in] f Array of 2^PARAM_FFT elements
|
|
* @param[in] f_coeffs Number coefficients of f (i.e. deg(f)+1)
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_fft(uint16_t *w, const uint16_t *f, size_t f_coeffs) {
|
|
uint16_t betas[PARAM_M - 1] = {0};
|
|
uint16_t betas_sums[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t f0[1 << (PARAM_FFT - 1)] = {0};
|
|
uint16_t f1[1 << (PARAM_FFT - 1)] = {0};
|
|
uint16_t deltas[PARAM_M - 1] = {0};
|
|
uint16_t u[1 << (PARAM_M - 1)] = {0};
|
|
uint16_t v[1 << (PARAM_M - 1)] = {0};
|
|
|
|
size_t i, k;
|
|
|
|
// Follows Gao and Mateer algorithm
|
|
compute_fft_betas(betas);
|
|
|
|
// Step 1: PARAM_FFT > 1, nothing to do
|
|
|
|
// Compute gammas sums
|
|
compute_subset_sums(betas_sums, betas, PARAM_M - 1);
|
|
|
|
// Step 2: beta_m = 1, nothing to do
|
|
|
|
// Step 3
|
|
radix(f0, f1, f, PARAM_FFT);
|
|
|
|
// Step 4: Compute deltas
|
|
for (i = 0; i < PARAM_M - 1; ++i) {
|
|
deltas[i] = PQCLEAN_HQC256_CLEAN_gf_square(betas[i]) ^ betas[i];
|
|
}
|
|
|
|
// Step 5
|
|
fft_rec(u, f0, (f_coeffs + 1) / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
|
|
fft_rec(v, f1, f_coeffs / 2, PARAM_M - 1, PARAM_FFT - 1, deltas);
|
|
|
|
k = 1 << (PARAM_M - 1);
|
|
// Step 6, 7 and error polynomial computation
|
|
memcpy(w + k, v, 2 * k);
|
|
|
|
// Check if 0 is root
|
|
w[0] = u[0];
|
|
|
|
// Check if 1 is root
|
|
w[k] ^= u[0];
|
|
|
|
// Find other roots
|
|
for (i = 1; i < k; ++i) {
|
|
w[i] = u[i] ^ PQCLEAN_HQC256_CLEAN_gf_mul(betas_sums[i], v[i]);
|
|
w[k + i] ^= w[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Arranges the received word vector in a form w such that applying the additive FFT transpose to w yields the BCH syndromes of the received word vector.
|
|
*
|
|
* Since the received word vector gives coefficients of the primitive element alpha, we twist accordingly. <br>
|
|
* Furthermore, the additive FFT transpose needs elements indexed by their decomposition on the chosen basis,
|
|
* so we apply the adequate permutation.
|
|
*
|
|
* @param[out] w Array of size 2^PARAM_M
|
|
* @param[in] vector Array of size VEC_N1_SIZE_BYTES
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(uint16_t *w, const uint64_t *vector) {
|
|
uint16_t r[1 << PARAM_M] = {0};
|
|
uint16_t gammas[PARAM_M - 1] = {0};
|
|
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
|
|
size_t i, j, k;
|
|
|
|
// Unpack the received word vector into array r
|
|
for (i = 0; i < VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0); ++i) {
|
|
for (j = 0; j < 64; ++j) {
|
|
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
|
|
}
|
|
}
|
|
|
|
// Last byte
|
|
for (j = 0; j < PARAM_N1 % 64; ++j) {
|
|
r[64 * i + j] = (uint8_t) ((vector[i] >> j) & 1);
|
|
}
|
|
|
|
// Complete r with zeros
|
|
memset(r + PARAM_N1, 0, 2 * ((1 << PARAM_M) - PARAM_N1));
|
|
|
|
compute_fft_betas(gammas);
|
|
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
|
|
|
|
// Twist and permute r adequately to obtain w
|
|
k = 1 << (PARAM_M - 1);
|
|
w[0] = 0;
|
|
w[k] = -r[0] & 1;
|
|
for (i = 1; i < k; ++i) {
|
|
w[i] = -r[gf_log[gammas_sums[i]]] & gammas_sums[i];
|
|
w[k + i] = -r[gf_log[gammas_sums[i] ^ 1]] & (gammas_sums[i] ^ 1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* @brief Retrieves the error polynomial error from the evaluations w of the ELP (Error Locator Polynomial) on all field elements.
|
|
*
|
|
* @param[out] error Array of size VEC_N1_SIZE_BYTES
|
|
* @param[in] w Array of size 2^PARAM_M
|
|
*/
|
|
void PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(uint64_t *error, const uint16_t *w) {
|
|
uint16_t gammas[PARAM_M - 1] = {0};
|
|
uint16_t gammas_sums[1 << (PARAM_M - 1)] = {0};
|
|
uint64_t bit;
|
|
uint16_t k;
|
|
size_t i, index;
|
|
|
|
compute_fft_betas(gammas);
|
|
compute_subset_sums(gammas_sums, gammas, PARAM_M - 1);
|
|
|
|
error[0] ^= 1 ^ ((uint16_t) - w[0] >> 15);
|
|
|
|
k = 1 << (PARAM_M - 1);
|
|
index = PARAM_GF_MUL_ORDER;
|
|
bit = 1 ^ ((uint16_t) - w[k] >> 15);
|
|
error[index / 8] ^= bit << (index % 64);
|
|
|
|
for (i = 1; i < k; ++i) {
|
|
index = PARAM_GF_MUL_ORDER - gf_log[gammas_sums[i]];
|
|
bit = 1 ^ ((uint16_t) - w[i] >> 15);
|
|
error[index / 64] ^= bit << (index % 64);
|
|
|
|
index = PARAM_GF_MUL_ORDER - gf_log[gammas_sums[i] ^ 1];
|
|
bit = 1 ^ ((uint16_t) - w[k + i] >> 15);
|
|
error[index / 64] ^= bit << (index % 64);
|
|
}
|
|
}
|