1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 07:59:01 +00:00
pqcrypto/crypto_sign/dilithium-iii/clean/sign.c
2019-01-16 13:02:35 +01:00

389 lines
11 KiB
C

#include "sign.h"
#include "fips202.h"
#include "packing.h"
#include "params.h"
#include "poly.h"
#include "polyvec.h"
#include "randombytes.h"
#include <stdint.h>
/*************************************************
* Name: expand_mat
*
* Description: Implementation of ExpandA. Generates matrix A with uniformly
* random coefficients a_{i,j} by performing rejection
* sampling on the output stream of SHAKE128(rho|i|j).
*
* Arguments: - polyvecl mat[K]: output matrix
* - const unsigned char rho[]: byte array containing seed rho
**************************************************/
void expand_mat(polyvecl mat[K], const unsigned char rho[SEEDBYTES]) {
unsigned int i, j;
unsigned char inbuf[SEEDBYTES + 1];
/* Don't change this to smaller values,
* sampling later assumes sufficient SHAKE output!
* Probability that we need more than 5 blocks: < 2^{-132}.
* Probability that we need more than 6 blocks: < 2^{-546}. */
unsigned char outbuf[5 * SHAKE128_RATE];
for (i = 0; i < SEEDBYTES; ++i) {
inbuf[i] = rho[i];
}
for (i = 0; i < K; ++i) {
for (j = 0; j < L; ++j) {
inbuf[SEEDBYTES] = i + (j << 4);
shake128(outbuf, sizeof(outbuf), inbuf, SEEDBYTES + 1);
poly_uniform(mat[i].vec + j, outbuf);
}
}
}
/*************************************************
* Name: challenge
*
* Description: Implementation of H. Samples polynomial with 60 nonzero
* coefficients in {-1,1} using the output stream of
* SHAKE256(mu|w1).
*
* Arguments: - poly *c: pointer to output polynomial
* - const unsigned char mu[]: byte array containing mu
* - const polyveck *w1: pointer to vector w1
**************************************************/
void challenge(poly *c, const unsigned char mu[CRHBYTES], const polyveck *w1) {
unsigned int i, b, pos;
unsigned char inbuf[CRHBYTES + K * POLW1_SIZE_PACKED];
unsigned char outbuf[SHAKE256_RATE];
uint64_t state[25], signs, mask;
for (i = 0; i < CRHBYTES; ++i) {
inbuf[i] = mu[i];
}
for (i = 0; i < K; ++i) {
polyw1_pack(inbuf + CRHBYTES + i * POLW1_SIZE_PACKED, w1->vec + i);
}
shake256_absorb(state, inbuf, sizeof(inbuf));
shake256_squeezeblocks(outbuf, 1, state);
signs = 0;
for (i = 0; i < 8; ++i) {
signs |= (uint64_t)outbuf[i] << 8 * i;
}
pos = 8;
mask = 1;
for (i = 0; i < N; ++i) {
c->coeffs[i] = 0;
}
for (i = 196; i < 256; ++i) {
do {
if (pos >= SHAKE256_RATE) {
shake256_squeezeblocks(outbuf, 1, state);
pos = 0;
}
b = outbuf[pos++];
} while (b > i);
c->coeffs[i] = c->coeffs[b];
c->coeffs[b] = (signs & mask) ? Q - 1 : 1;
mask <<= 1;
}
}
/*************************************************
* Name: crypto_sign_keypair
*
* Description: Generates public and private key.
*
* Arguments: - unsigned char *pk: pointer to output public key (allocated
* array of CRYPTO_PUBLICKEYBYTES bytes)
* - unsigned char *sk: pointer to output private key (allocated
* array of CRYPTO_SECRETKEYBYTES bytes)
*
* Returns 0 (success)
**************************************************/
int crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {
unsigned int i;
unsigned char seedbuf[3 * SEEDBYTES];
unsigned char tr[CRHBYTES];
unsigned char *rho, *rhoprime, *key;
uint16_t nonce = 0;
polyvecl mat[K];
polyvecl s1, s1hat;
polyveck s2, t, t1, t0;
/* Expand 32 bytes of randomness into rho, rhoprime and key */
randombytes(seedbuf, SEEDBYTES);
shake256(seedbuf, 3 * SEEDBYTES, seedbuf, SEEDBYTES);
rho = seedbuf;
rhoprime = rho + SEEDBYTES;
key = rho + 2 * SEEDBYTES;
/* Expand matrix */
expand_mat(mat, rho);
/* Sample short vectors s1 and s2 */
for (i = 0; i < L; ++i) {
poly_uniform_eta(s1.vec + i, rhoprime, nonce++);
}
for (i = 0; i < K; ++i) {
poly_uniform_eta(s2.vec + i, rhoprime, nonce++);
}
/* Matrix-vector multiplication */
s1hat = s1;
polyvecl_ntt(&s1hat);
for (i = 0; i < K; ++i) {
polyvecl_pointwise_acc_invmontgomery(t.vec + i, mat + i, &s1hat);
poly_reduce(t.vec + i);
poly_invntt_montgomery(t.vec + i);
}
/* Add noise vector s2 */
polyveck_add(&t, &t, &s2);
/* Extract t1 and write public key */
polyveck_freeze(&t);
polyveck_power2round(&t1, &t0, &t);
pack_pk(pk, rho, &t1);
/* Compute CRH(rho, t1) and write secret key */
shake256(tr, CRHBYTES, pk, CRYPTO_PUBLICKEYBYTES);
pack_sk(sk, rho, key, tr, &s1, &s2, &t0);
return 0;
}
/*************************************************
* Name: crypto_sign
*
* Description: Compute signed message.
*
* Arguments: - unsigned char *sm: pointer to output signed message (allocated
* array with CRYPTO_BYTES + mlen bytes),
* can be equal to m
* - unsigned long long *smlen: pointer to output length of signed
* message
* - const unsigned char *m: pointer to message to be signed
* - unsigned long long mlen: length of message
* - const unsigned char *sk: pointer to bit-packed secret key
*
* Returns 0 (success)
**************************************************/
int crypto_sign(unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *sk) {
unsigned long long i, j;
unsigned int n;
unsigned char
seedbuf[2 * SEEDBYTES + CRHBYTES]; // TODO(thom): nonce in seedbuf (2x)
unsigned char tr[CRHBYTES];
unsigned char *rho, *key, *mu;
uint16_t nonce = 0;
poly c, chat;
polyvecl mat[K], s1, y, yhat, z;
polyveck s2, t0, w, w1;
polyveck h, wcs2, wcs20, ct0, tmp;
rho = seedbuf;
key = seedbuf + SEEDBYTES;
mu = seedbuf + 2 * SEEDBYTES;
unpack_sk(rho, key, tr, &s1, &s2, &t0, sk);
/* Copy tr and message into the sm buffer,
* backwards since m and sm can be equal in SUPERCOP API */
for (i = 1; i <= mlen; ++i) {
sm[CRYPTO_BYTES + mlen - i] = m[mlen - i];
}
for (i = 0; i < CRHBYTES; ++i) {
sm[CRYPTO_BYTES - CRHBYTES + i] = tr[i];
}
/* Compute CRH(tr, msg) */
shake256(mu, CRHBYTES, sm + CRYPTO_BYTES - CRHBYTES, CRHBYTES + mlen);
/* Expand matrix and transform vectors */
expand_mat(mat, rho);
polyvecl_ntt(&s1);
polyveck_ntt(&s2);
polyveck_ntt(&t0);
rej:
/* Sample intermediate vector y */
for (i = 0; i < L; ++i) {
poly_uniform_gamma1m1(y.vec + i, key, nonce++);
}
/* Matrix-vector multiplication */
yhat = y;
polyvecl_ntt(&yhat);
for (i = 0; i < K; ++i) {
polyvecl_pointwise_acc_invmontgomery(w.vec + i, mat + i, &yhat);
poly_reduce(w.vec + i);
poly_invntt_montgomery(w.vec + i);
}
/* Decompose w and call the random oracle */
polyveck_csubq(&w);
polyveck_decompose(&w1, &tmp, &w);
challenge(&c, mu, &w1);
/* Compute z, reject if it reveals secret */
chat = c;
poly_ntt(&chat);
for (i = 0; i < L; ++i) {
poly_pointwise_invmontgomery(z.vec + i, &chat, s1.vec + i);
poly_invntt_montgomery(z.vec + i);
}
polyvecl_add(&z, &z, &y);
polyvecl_freeze(&z);
if (polyvecl_chknorm(&z, GAMMA1 - BETA)) {
goto rej;
}
/* Compute w - cs2, reject if w1 can not be computed from it */
for (i = 0; i < K; ++i) {
poly_pointwise_invmontgomery(wcs2.vec + i, &chat, s2.vec + i);
poly_invntt_montgomery(wcs2.vec + i);
}
polyveck_sub(&wcs2, &w, &wcs2);
polyveck_freeze(&wcs2);
polyveck_decompose(&tmp, &wcs20, &wcs2);
polyveck_csubq(&wcs20);
if (polyveck_chknorm(&wcs20, GAMMA2 - BETA)) {
goto rej;
}
for (i = 0; i < K; ++i) {
for (j = 0; j < N; ++j) {
if (tmp.vec[i].coeffs[j] != w1.vec[i].coeffs[j]) {
goto rej;
}
}
}
/* Compute hints for w1 */
for (i = 0; i < K; ++i) {
poly_pointwise_invmontgomery(ct0.vec + i, &chat, t0.vec + i);
poly_invntt_montgomery(ct0.vec + i);
}
polyveck_csubq(&ct0);
if (polyveck_chknorm(&ct0, GAMMA2)) {
goto rej;
}
polyveck_add(&tmp, &wcs2, &ct0);
polyveck_csubq(&tmp);
n = polyveck_make_hint(&h, &wcs2, &tmp);
if (n > OMEGA) {
goto rej;
}
/* Write signature */
pack_sig(sm, &z, &h, &c);
*smlen = mlen + CRYPTO_BYTES;
return 0;
}
/*************************************************
* Name: crypto_sign_open
*
* Description: Verify signed message.
*
* Arguments: - unsigned char *m: pointer to output message (allocated
* array with smlen bytes), can be equal to sm
* - unsigned long long *mlen: pointer to output length of message
* - const unsigned char *sm: pointer to signed message
* - unsigned long long smlen: length of signed message
* - const unsigned char *sk: pointer to bit-packed public key
*
* Returns 0 if signed message could be verified correctly and -1 otherwise
**************************************************/
int crypto_sign_open(unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk) {
unsigned long long i;
unsigned char rho[SEEDBYTES];
unsigned char mu[CRHBYTES];
poly c, chat, cp;
polyvecl mat[K], z;
polyveck t1, w1, h, tmp1, tmp2;
if (smlen < CRYPTO_BYTES) {
goto badsig;
}
*mlen = smlen - CRYPTO_BYTES;
unpack_pk(rho, &t1, pk);
if (unpack_sig(&z, &h, &c, sm)) {
goto badsig;
}
if (polyvecl_chknorm(&z, GAMMA1 - BETA)) {
goto badsig;
}
/* Compute CRH(CRH(rho, t1), msg) using m as "playground" buffer */
if (sm != m) {
for (i = 0; i < *mlen; ++i) {
m[CRYPTO_BYTES + i] = sm[CRYPTO_BYTES + i];
}
}
shake256(m + CRYPTO_BYTES - CRHBYTES, CRHBYTES, pk, CRYPTO_PUBLICKEYBYTES);
shake256(mu, CRHBYTES, m + CRYPTO_BYTES - CRHBYTES, CRHBYTES + *mlen);
/* Matrix-vector multiplication; compute Az - c2^dt1 */
expand_mat(mat, rho);
polyvecl_ntt(&z);
for (i = 0; i < K; ++i) {
polyvecl_pointwise_acc_invmontgomery(tmp1.vec + i, mat + i, &z);
}
chat = c;
poly_ntt(&chat);
polyveck_shiftl(&t1, D);
polyveck_ntt(&t1);
for (i = 0; i < K; ++i) {
poly_pointwise_invmontgomery(tmp2.vec + i, &chat, t1.vec + i);
}
polyveck_sub(&tmp1, &tmp1, &tmp2);
polyveck_reduce(&tmp1);
polyveck_invntt_montgomery(&tmp1);
/* Reconstruct w1 */
polyveck_csubq(&tmp1);
polyveck_use_hint(&w1, &tmp1, &h);
/* Call random oracle and verify challenge */
challenge(&cp, mu, &w1);
for (i = 0; i < N; ++i) {
if (c.coeffs[i] != cp.coeffs[i]) {
goto badsig;
}
}
/* All good, copy msg, return 0 */
for (i = 0; i < *mlen; ++i) {
m[i] = sm[CRYPTO_BYTES + i];
}
return 0;
/* Signature verification failed */
badsig:
*mlen = (unsigned long long)-1;
for (i = 0; i < smlen; ++i) {
m[i] = 0;
}
return -1;
}