1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-23 07:59:01 +00:00
pqcrypto/crypto_kem/hqc-rmrs-256/avx2/gf.c
2021-03-24 21:02:47 +00:00

135 lines
3.2 KiB
C

#include "gf.h"
#include "parameters.h"
#include <emmintrin.h>
#include <immintrin.h>
#include <stdint.h>
/**
* @file gf.c
* Galois field implementation with multiplication using the pclmulqdq instruction
*/
static uint16_t gf_reduce(uint64_t x, size_t deg_x);
/**
* Returns the integer i such that elt = a^i
* where a is the primitive element of GF(2^GF_M).
*@returns the logarithm of the given element
*/
uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_log(uint16_t elt) {
return log[elt];
}
/**
* Reduces polynomial x modulo primitive polynomial GF_POLY.
* @returns x mod GF_POLY
* @param[in] x Polynomial of degree less than 64
* @param[in] deg_x The degree of polynomial x
*/
static uint16_t gf_reduce(uint64_t x, size_t deg_x) {
// Compute the distance between the primitive polynomial first two set bits
size_t lz1 = __builtin_clz(PARAM_GF_POLY);
size_t lz2 = __builtin_clz(PARAM_GF_POLY ^ 1 << PARAM_M);
size_t dist = lz2 - lz1;
// Deduce the number of steps of reduction
size_t steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), dist);
// Reduce
for (size_t i = 0; i < steps; ++i) {
uint64_t mod = x >> PARAM_M;
x &= (1 << PARAM_M) - 1;
x ^= mod;
size_t tz1 = 0;
uint16_t rmdr = PARAM_GF_POLY ^ 1;
for (size_t j = __builtin_popcount(PARAM_GF_POLY) - 2; j; --j) {
size_t tz2 = __builtin_ctz(rmdr);
size_t shift = tz2 - tz1;
mod <<= shift;
x ^= mod;
rmdr ^= 1 << tz2;
tz1 = tz2;
}
}
return x;
}
/**
* Multiplies two elements of GF(2^GF_M).
* @returns the product a*b
* @param[in] a Element of GF(2^GF_M)
* @param[in] b Element of GF(2^GF_M)
*/
uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_mul(uint16_t a, uint16_t b) {
__m128i va = _mm_cvtsi32_si128(a);
__m128i vb = _mm_cvtsi32_si128(b);
__m128i vab = _mm_clmulepi64_si128(va, vb, 0);
uint32_t ab = _mm_cvtsi128_si32(vab);
return gf_reduce(ab, 2 * (PARAM_M - 1));
}
/**
* Squares an element of GF(2^GF_M).
* @returns a^2
* @param[in] a Element of GF(2^GF_M)
*/
uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_square(uint16_t a) {
uint32_t b = a;
uint32_t s = b & 1;
for (size_t i = 1; i < PARAM_M; ++i) {
b <<= 1;
s ^= b & (1 << 2 * i);
}
return gf_reduce(s, 2 * (PARAM_M - 1));
}
/**
* Computes the inverse of an element of GF(2^GF_M) by fast exponentiation.
* @returns the inverse of a
* @param[in] a Element of GF(2^GF_M)
*/
uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_inverse(uint16_t a) {
size_t pow = (1 << PARAM_M) - 2;
uint16_t inv = 1;
do {
if (pow & 1) {
inv = PQCLEAN_HQCRMRS256_AVX2_gf_mul(inv, a);
}
a = PQCLEAN_HQCRMRS256_AVX2_gf_square(a);
pow >>= 1;
} while (pow);
return inv;
}
/**
* Returns i modulo 2^GF_M-1.
* i must be less than 2*(2^GF_M-1).
* Therefore, the return value is either i or i-2^GF_M+1.
* @returns i mod (2^GF_M-1)
* @param[in] i The integer whose modulo is taken
*/
uint16_t PQCLEAN_HQCRMRS256_AVX2_gf_mod(uint16_t i) {
uint16_t tmp = (uint16_t) (i - PARAM_GF_MUL_ORDER);
// mask = 0xffff if (i < GF_MUL_ORDER)
uint16_t mask = -(tmp >> 15);
return tmp + (mask & PARAM_GF_MUL_ORDER);
}