mirror of
https://github.com/henrydcase/pqc.git
synced 2024-11-30 03:11:43 +00:00
239 lines
13 KiB
C
239 lines
13 KiB
C
/********************************************************************************************
|
|
* FrodoKEM: Learning with Errors Key Encapsulation
|
|
*
|
|
* Abstract: Key Encapsulation Mechanism (KEM) based on Frodo
|
|
*********************************************************************************************/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "fips202.h"
|
|
#include "randombytes.h"
|
|
|
|
#include "api.h"
|
|
#include "common.h"
|
|
#include "params.h"
|
|
|
|
int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) {
|
|
// FrodoKEM's key generation
|
|
// Outputs: public key pk ( BYTES_SEED_A + (PARAMS_LOGQ*PARAMS_N*PARAMS_NBAR)/8 bytes)
|
|
// secret key sk (CRYPTO_BYTES + BYTES_SEED_A + (PARAMS_LOGQ*PARAMS_N*PARAMS_NBAR)/8 + 2*PARAMS_N*PARAMS_NBAR + BYTES_PKHASH bytes)
|
|
uint8_t *pk_seedA = &pk[0];
|
|
uint8_t *pk_b = &pk[BYTES_SEED_A];
|
|
uint8_t *sk_s = &sk[0];
|
|
uint8_t *sk_pk = &sk[CRYPTO_BYTES];
|
|
uint8_t *sk_S = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES];
|
|
uint8_t *sk_pkh = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES + 2 * PARAMS_N * PARAMS_NBAR];
|
|
uint16_t B[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t S[2 * PARAMS_N * PARAMS_NBAR] = {0}; // contains secret data
|
|
uint16_t *E = &S[PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
uint8_t randomness[2 * CRYPTO_BYTES + BYTES_SEED_A]; // contains secret data via randomness_s and randomness_seedSE
|
|
uint8_t *randomness_s = &randomness[0]; // contains secret data
|
|
uint8_t *randomness_seedSE = &randomness[CRYPTO_BYTES]; // contains secret data
|
|
uint8_t *randomness_z = &randomness[2 * CRYPTO_BYTES];
|
|
uint8_t shake_input_seedSE[1 + CRYPTO_BYTES]; // contains secret data
|
|
|
|
// Generate the secret value s, the seed for S and E, and the seed for the seed for A. Add seed_A to the public key
|
|
randombytes(randomness, CRYPTO_BYTES + CRYPTO_BYTES + BYTES_SEED_A);
|
|
shake(pk_seedA, BYTES_SEED_A, randomness_z, BYTES_SEED_A);
|
|
|
|
// Generate S and E, and compute B = A*S + E. Generate A on-the-fly
|
|
shake_input_seedSE[0] = 0x5F;
|
|
memcpy(&shake_input_seedSE[1], randomness_seedSE, CRYPTO_BYTES);
|
|
shake((uint8_t *)S, 2 * PARAMS_N * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSE, 1 + CRYPTO_BYTES);
|
|
for (size_t i = 0; i < 2 * PARAMS_N * PARAMS_NBAR; i++) {
|
|
S[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(S[i]);
|
|
}
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(S, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(E, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_as_plus_e(B, S, E, pk);
|
|
|
|
// Encode the second part of the public key
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_pack(pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, B, PARAMS_N * PARAMS_NBAR, PARAMS_LOGQ);
|
|
|
|
// Add s, pk and S to the secret key
|
|
memcpy(sk_s, randomness_s, CRYPTO_BYTES);
|
|
memcpy(sk_pk, pk, CRYPTO_PUBLICKEYBYTES);
|
|
for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) {
|
|
S[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(S[i]);
|
|
}
|
|
memcpy(sk_S, S, 2 * PARAMS_N * PARAMS_NBAR);
|
|
|
|
// Add H(pk) to the secret key
|
|
shake(sk_pkh, BYTES_PKHASH, pk, CRYPTO_PUBLICKEYBYTES);
|
|
|
|
// Cleanup:
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)S, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)E, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(randomness, 2 * CRYPTO_BYTES);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSE, 1 + CRYPTO_BYTES);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) {
|
|
// FrodoKEM's key encapsulation
|
|
const uint8_t *pk_seedA = &pk[0];
|
|
const uint8_t *pk_b = &pk[BYTES_SEED_A];
|
|
uint8_t *ct_c1 = &ct[0];
|
|
uint8_t *ct_c2 = &ct[(PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8];
|
|
uint16_t B[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t V[PARAMS_NBAR * PARAMS_NBAR] = {0}; // contains secret data
|
|
uint16_t C[PARAMS_NBAR * PARAMS_NBAR] = {0};
|
|
uint16_t Bp[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t Sp[(2 * PARAMS_N + PARAMS_NBAR)*PARAMS_NBAR] = {0}; // contains secret data
|
|
uint16_t *Ep = &Sp[PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
uint16_t *Epp = &Sp[2 * PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
uint8_t G2in[BYTES_PKHASH + BYTES_MU]; // contains secret data via mu
|
|
uint8_t *pkh = &G2in[0];
|
|
uint8_t *mu = &G2in[BYTES_PKHASH]; // contains secret data
|
|
uint8_t G2out[2 * CRYPTO_BYTES]; // contains secret data
|
|
uint8_t *seedSE = &G2out[0]; // contains secret data
|
|
uint8_t *k = &G2out[CRYPTO_BYTES]; // contains secret data
|
|
uint8_t Fin[CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES]; // contains secret data via Fin_k
|
|
uint8_t *Fin_ct = &Fin[0];
|
|
uint8_t *Fin_k = &Fin[CRYPTO_CIPHERTEXTBYTES]; // contains secret data
|
|
uint8_t shake_input_seedSE[1 + CRYPTO_BYTES]; // contains secret data
|
|
|
|
// pkh <- G_1(pk), generate random mu, compute (seedSE || k) = G_2(pkh || mu)
|
|
shake(pkh, BYTES_PKHASH, pk, CRYPTO_PUBLICKEYBYTES);
|
|
randombytes(mu, BYTES_MU);
|
|
shake(G2out, CRYPTO_BYTES + CRYPTO_BYTES, G2in, BYTES_PKHASH + BYTES_MU);
|
|
|
|
// Generate Sp and Ep, and compute Bp = Sp*A + Ep. Generate A on-the-fly
|
|
shake_input_seedSE[0] = 0x96;
|
|
memcpy(&shake_input_seedSE[1], seedSE, CRYPTO_BYTES);
|
|
shake((uint8_t *)Sp, (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSE, 1 + CRYPTO_BYTES);
|
|
for (size_t i = 0; i < (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR; i++) {
|
|
Sp[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(Sp[i]);
|
|
}
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Sp, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Ep, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sa_plus_e(Bp, Sp, Ep, pk_seedA);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_pack(ct_c1, (PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8, Bp, PARAMS_N * PARAMS_NBAR, PARAMS_LOGQ);
|
|
|
|
// Generate Epp, and compute V = Sp*B + Epp
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Epp, PARAMS_NBAR * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(B, PARAMS_N * PARAMS_NBAR, pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, PARAMS_LOGQ);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sb_plus_e(V, B, Sp, Epp);
|
|
|
|
// Encode mu, and compute C = V + enc(mu) (mod q)
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_key_encode(C, (uint16_t *)mu);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_add(C, V, C);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_pack(ct_c2, (PARAMS_LOGQ * PARAMS_NBAR * PARAMS_NBAR) / 8, C, PARAMS_NBAR * PARAMS_NBAR, PARAMS_LOGQ);
|
|
|
|
// Compute ss = F(ct||KK)
|
|
memcpy(Fin_ct, ct, CRYPTO_CIPHERTEXTBYTES);
|
|
memcpy(Fin_k, k, CRYPTO_BYTES);
|
|
shake(ss, CRYPTO_BYTES, Fin, CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES);
|
|
|
|
// Cleanup:
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)V, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Sp, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Ep, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Epp, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(mu, BYTES_MU);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(G2out, 2 * CRYPTO_BYTES);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(Fin_k, CRYPTO_BYTES);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSE, 1 + CRYPTO_BYTES);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) {
|
|
// FrodoKEM's key decapsulation
|
|
uint16_t B[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t Bp[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t W[PARAMS_NBAR * PARAMS_NBAR] = {0}; // contains secret data
|
|
uint16_t C[PARAMS_NBAR * PARAMS_NBAR] = {0};
|
|
uint16_t CC[PARAMS_NBAR * PARAMS_NBAR] = {0};
|
|
uint16_t BBp[PARAMS_N * PARAMS_NBAR] = {0};
|
|
uint16_t Sp[(2 * PARAMS_N + PARAMS_NBAR)*PARAMS_NBAR] = {0}; // contains secret data
|
|
uint16_t *Ep = &Sp[PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
uint16_t *Epp = &Sp[2 * PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
const uint8_t *ct_c1 = &ct[0];
|
|
const uint8_t *ct_c2 = &ct[(PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8];
|
|
const uint8_t *sk_s = &sk[0];
|
|
const uint8_t *sk_pk = &sk[CRYPTO_BYTES];
|
|
const uint16_t *sk_S = (uint16_t *) &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES];
|
|
uint16_t S[PARAMS_N * PARAMS_NBAR]; // contains secret data
|
|
const uint8_t *sk_pkh = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES + 2 * PARAMS_N * PARAMS_NBAR];
|
|
const uint8_t *pk_seedA = &sk_pk[0];
|
|
const uint8_t *pk_b = &sk_pk[BYTES_SEED_A];
|
|
uint8_t G2in[BYTES_PKHASH + BYTES_MU]; // contains secret data via muprime
|
|
uint8_t *pkh = &G2in[0];
|
|
uint8_t *muprime = &G2in[BYTES_PKHASH]; // contains secret data
|
|
uint8_t G2out[2 * CRYPTO_BYTES]; // contains secret data
|
|
uint8_t *seedSEprime = &G2out[0]; // contains secret data
|
|
uint8_t *kprime = &G2out[CRYPTO_BYTES]; // contains secret data
|
|
uint8_t Fin[CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES]; // contains secret data via Fin_k
|
|
uint8_t *Fin_ct = &Fin[0];
|
|
uint8_t *Fin_k = &Fin[CRYPTO_CIPHERTEXTBYTES]; // contains secret data
|
|
uint8_t shake_input_seedSEprime[1 + CRYPTO_BYTES]; // contains secret data
|
|
|
|
for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) {
|
|
S[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(sk_S[i]);
|
|
}
|
|
|
|
// Compute W = C - Bp*S (mod q), and decode the randomness mu
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(Bp, PARAMS_N * PARAMS_NBAR, ct_c1, (PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8, PARAMS_LOGQ);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(C, PARAMS_NBAR * PARAMS_NBAR, ct_c2, (PARAMS_LOGQ * PARAMS_NBAR * PARAMS_NBAR) / 8, PARAMS_LOGQ);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_bs(W, Bp, S);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sub(W, C, W);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_key_decode((uint16_t *)muprime, W);
|
|
|
|
// Generate (seedSE' || k') = G_2(pkh || mu')
|
|
memcpy(pkh, sk_pkh, BYTES_PKHASH);
|
|
shake(G2out, CRYPTO_BYTES + CRYPTO_BYTES, G2in, BYTES_PKHASH + BYTES_MU);
|
|
|
|
// Generate Sp and Ep, and compute BBp = Sp*A + Ep. Generate A on-the-fly
|
|
shake_input_seedSEprime[0] = 0x96;
|
|
memcpy(&shake_input_seedSEprime[1], seedSEprime, CRYPTO_BYTES);
|
|
shake((uint8_t *)Sp, (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSEprime, 1 + CRYPTO_BYTES);
|
|
for (size_t i = 0; i < (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR; i++) {
|
|
Sp[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(Sp[i]);
|
|
}
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Sp, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Ep, PARAMS_N * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sa_plus_e(BBp, Sp, Ep, pk_seedA);
|
|
|
|
// Generate Epp, and compute W = Sp*B + Epp
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Epp, PARAMS_NBAR * PARAMS_NBAR);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(B, PARAMS_N * PARAMS_NBAR, pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, PARAMS_LOGQ);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sb_plus_e(W, B, Sp, Epp);
|
|
|
|
// Encode mu, and compute CC = W + enc(mu') (mod q)
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_key_encode(CC, (uint16_t *)muprime);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_add(CC, W, CC);
|
|
|
|
// Prepare input to F
|
|
memcpy(Fin_ct, ct, CRYPTO_CIPHERTEXTBYTES);
|
|
|
|
// Reducing BBp modulo q
|
|
for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) {
|
|
BBp[i] = BBp[i] & ((1 << PARAMS_LOGQ) - 1);
|
|
}
|
|
|
|
// Is (Bp == BBp & C == CC) = true
|
|
if (memcmp(Bp, BBp, 2 * PARAMS_N * PARAMS_NBAR) == 0 && memcmp(C, CC, 2 * PARAMS_NBAR * PARAMS_NBAR) == 0) {
|
|
// Load k' to do ss = F(ct || k')
|
|
memcpy(Fin_k, kprime, CRYPTO_BYTES);
|
|
} else {
|
|
// Load s to do ss = F(ct || s)
|
|
memcpy(Fin_k, sk_s, CRYPTO_BYTES);
|
|
}
|
|
shake(ss, CRYPTO_BYTES, Fin, CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES);
|
|
|
|
// Cleanup:
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)W, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Sp, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)S, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Ep, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Epp, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t));
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(muprime, BYTES_MU);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(G2out, 2 * CRYPTO_BYTES);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(Fin_k, CRYPTO_BYTES);
|
|
PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSEprime, 1 + CRYPTO_BYTES);
|
|
return 0;
|
|
}
|