1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-30 03:11:43 +00:00
pqcrypto/crypto_kem/mceliece8192128/vec/pk_gen.c
Thom Wiggers ac2c20045c Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2021-03-24 21:02:45 +00:00

249 lines
6.5 KiB
C

/*
This file is for public-key generation
*/
#include "pk_gen.h"
#include "benes.h"
#include "controlbits.h"
#include "fft.h"
#include "params.h"
#include "util.h"
#include <stdint.h>
static void de_bitslicing(uint64_t *out, vec in[][GFBITS]) {
int i, j, r;
for (i = 0; i < (1 << GFBITS); i++) {
out[i] = 0 ;
}
for (i = 0; i < 128; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
for (r = 0; r < 64; r++) {
out[i * 64 + r] <<= 1;
out[i * 64 + r] |= (in[i][j] >> r) & 1;
}
}
}
}
static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t *in) {
int i, j, r;
for (i = 0; i < 128; i++) {
for (j = GFBITS - 1; j >= 0; j--) {
for (r = 63; r >= 0; r--) {
out1[i][j] <<= 1;
out1[i][j] |= (in[i * 64 + r] >> (j + GFBITS)) & 1;
}
}
for (j = GFBITS - 1; j >= 0; j--) {
for (r = 63; r >= 0; r--) {
out0[i][GFBITS - 1 - j] <<= 1;
out0[i][GFBITS - 1 - j] |= (in[i * 64 + r] >> j) & 1;
}
}
}
}
int PQCLEAN_MCELIECE8192128_VEC_pk_gen(unsigned char *pk, uint32_t *perm, const unsigned char *sk) {
int i, j, k;
int row, c, d;
uint64_t mat[ GFBITS * SYS_T ][ 128 ];
uint64_t ops[ GFBITS * SYS_T ][ GFBITS * SYS_T / 64 ];
uint64_t mask;
vec irr_int[2][ GFBITS ];
vec consts[ 128 ][ GFBITS ];
vec eval[ 128 ][ GFBITS ];
vec prod[ 128 ][ GFBITS ];
vec tmp[ GFBITS ];
uint64_t list[1 << GFBITS];
uint64_t one_row[ (SYS_N - GFBITS * SYS_T) / 64 ];
// compute the inverses
PQCLEAN_MCELIECE8192128_VEC_irr_load(irr_int, sk);
PQCLEAN_MCELIECE8192128_VEC_fft(eval, irr_int);
PQCLEAN_MCELIECE8192128_VEC_vec_copy(prod[0], eval[0]);
for (i = 1; i < 128; i++) {
PQCLEAN_MCELIECE8192128_VEC_vec_mul(prod[i], prod[i - 1], eval[i]);
}
PQCLEAN_MCELIECE8192128_VEC_vec_inv(tmp, prod[127]);
for (i = 126; i >= 0; i--) {
PQCLEAN_MCELIECE8192128_VEC_vec_mul(prod[i + 1], prod[i], tmp);
PQCLEAN_MCELIECE8192128_VEC_vec_mul(tmp, tmp, eval[i + 1]);
}
PQCLEAN_MCELIECE8192128_VEC_vec_copy(prod[0], tmp);
// fill matrix
de_bitslicing(list, prod);
for (i = 0; i < (1 << GFBITS); i++) {
list[i] <<= GFBITS;
list[i] |= i;
list[i] |= ((uint64_t) perm[i]) << 31;
}
PQCLEAN_MCELIECE8192128_VEC_sort_63b(1 << GFBITS, list);
to_bitslicing_2x(consts, prod, list);
for (i = 0; i < (1 << GFBITS); i++) {
perm[i] = list[i] & GFMASK;
}
for (j = 0; j < (GFBITS * SYS_T + 63) / 64; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ j ] = prod[ j ][ k ];
}
}
for (i = 1; i < SYS_T; i++) {
for (j = 0; j < (GFBITS * SYS_T + 63) / 64; j++) {
PQCLEAN_MCELIECE8192128_VEC_vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ j ] = prod[ j ][ k ];
}
}
}
// gaussian elimination to obtain an upper triangular matrix
// and keep track of the operations in ops
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
ops[ row ][ c ] = 0;
}
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
ops[ row ][ i ] = 1;
ops[ row ][ i ] <<= j;
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ row ][ i ] >> j;
mask &= 1;
mask -= 1;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
}
}
if ( ((mat[ row ][ i ] >> j) & 1) == 0 ) { // return if not systematic
return -1;
}
for (k = row + 1; k < GFBITS * SYS_T; k++) {
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
}
// computing the lineaer map required to obatin the systematic form
for (i = (GFBITS * SYS_T) / 64 - 1; i >= 0; i--) {
for (j = 63; j >= 0; j--) {
row = i * 64 + j;
for (k = 0; k < row; k++) {
{
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
}
}
// apply the linear map to the non-systematic part
for (j = (GFBITS * SYS_T + 63) / 64; j < 128; j++) {
for (k = 0; k < GFBITS; k++) {
mat[ k ][ j ] = prod[ j ][ k ];
}
}
for (i = 1; i < SYS_T; i++) {
for (j = (GFBITS * SYS_T + 63) / 64; j < 128; j++) {
PQCLEAN_MCELIECE8192128_VEC_vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++) {
mat[ i * GFBITS + k ][ j ] = prod[ j ][ k ];
}
}
}
for (i = 0; i < (GFBITS * SYS_T) / 64; i++) {
for (j = 0; j < 64; j++) {
row = i * 64 + j;
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
one_row[ k ] = 0;
}
for (c = 0; c < (GFBITS * SYS_T) / 64; c++) {
for (d = 0; d < 64; d++) {
mask = ops[ row ][ c ] >> d;
mask &= 1;
mask = -mask;
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
one_row[ k ] ^= mat[ c * 64 + d ][ k + (GFBITS * SYS_T) / 64 ] & mask;
}
}
}
for (k = 0; k < (SYS_N - GFBITS * SYS_T) / 64; k++) {
PQCLEAN_MCELIECE8192128_VEC_store8(pk, one_row[ k ]);
pk += 8;
}
}
}
//
return 0;
}