// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "bytes" "crypto" "crypto/ecdsa" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "io" "net" "strconv" "strings" "sync/atomic" ) type clientHandshakeState struct { c *Conn serverHello *serverHelloMsg hello *clientHelloMsg suite *cipherSuite masterSecret []byte session *ClientSessionState // TLS 1.0-1.2 fields finishedHash finishedHash // TLS 1.3 fields keySchedule *keySchedule13 privateKey []byte } func makeClientHello(config *Config) (*clientHelloMsg, error) { if len(config.ServerName) == 0 && !config.InsecureSkipVerify { return nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config") } nextProtosLength := 0 for _, proto := range config.NextProtos { if l := len(proto); l == 0 || l > 255 { return nil, errors.New("tls: invalid NextProtos value") } else { nextProtosLength += 1 + l } } if nextProtosLength > 0xffff { return nil, errors.New("tls: NextProtos values too large") } hello := &clientHelloMsg{ vers: config.maxVersion(), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, scts: true, serverName: hostnameInSNI(config.ServerName), supportedCurves: config.curvePreferences(), supportedPoints: []uint8{pointFormatUncompressed}, nextProtoNeg: len(config.NextProtos) > 0, secureRenegotiationSupported: true, delegatedCredential: config.AcceptDelegatedCredential, alpnProtocols: config.NextProtos, extendedMSSupported: config.UseExtendedMasterSecret, } possibleCipherSuites := config.cipherSuites() hello.cipherSuites = make([]uint16, 0, len(possibleCipherSuites)) NextCipherSuite: for _, suiteId := range possibleCipherSuites { for _, suite := range cipherSuites { if suite.id != suiteId { continue } // Don't advertise TLS 1.2-only cipher suites unless // we're attempting TLS 1.2. if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 { continue NextCipherSuite } // Don't advertise TLS 1.3-only cipher suites unless // we're attempting TLS 1.3. if hello.vers < VersionTLS13 && suite.flags&suiteTLS13 != 0 { continue NextCipherSuite } hello.cipherSuites = append(hello.cipherSuites, suiteId) continue NextCipherSuite } } _, err := io.ReadFull(config.rand(), hello.random) if err != nil { return nil, errors.New("tls: short read from Rand: " + err.Error()) } if hello.vers >= VersionTLS12 { hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms } if hello.vers >= VersionTLS13 { // Version preference is indicated via "supported_extensions", // set legacy_version to TLS 1.2 for backwards compatibility. hello.vers = VersionTLS12 hello.supportedVersions = config.getSupportedVersions() hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms13 hello.supportedSignatureAlgorithmsCert = supportedSigAlgorithmsCert(supportedSignatureAlgorithms13) } return hello, nil } // c.out.Mutex <= L; c.handshakeMutex <= L. func (c *Conn) clientHandshake() error { if c.config == nil { c.config = defaultConfig() } // This may be a renegotiation handshake, in which case some fields // need to be reset. c.didResume = false hello, err := makeClientHello(c.config) if err != nil { return err } if c.handshakes > 0 { hello.secureRenegotiation = c.clientFinished[:] } var session *ClientSessionState var cacheKey string sessionCache := c.config.ClientSessionCache // TLS 1.3 has no session resumption based on session tickets. if c.config.SessionTicketsDisabled || c.config.maxVersion() >= VersionTLS13 { sessionCache = nil } if sessionCache != nil { hello.ticketSupported = true } // Session resumption is not allowed if renegotiating because // renegotiation is primarily used to allow a client to send a client // certificate, which would be skipped if session resumption occurred. if sessionCache != nil && c.handshakes == 0 { // Try to resume a previously negotiated TLS session, if // available. cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config) candidateSession, ok := sessionCache.Get(cacheKey) if ok { // Check that the ciphersuite/version used for the // previous session are still valid. cipherSuiteOk := false for _, id := range hello.cipherSuites { if id == candidateSession.cipherSuite { cipherSuiteOk = true break } } versOk := candidateSession.vers >= c.config.minVersion() && candidateSession.vers <= c.config.maxVersion() if versOk && cipherSuiteOk { session = candidateSession } } } if session != nil { hello.sessionTicket = session.sessionTicket // A random session ID is used to detect when the // server accepted the ticket and is resuming a session // (see RFC 5077). hello.sessionId = make([]byte, 16) if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil { return errors.New("tls: short read from Rand: " + err.Error()) } } hs := &clientHandshakeState{ c: c, hello: hello, session: session, } var clientKS keyShare if c.config.maxVersion() >= VersionTLS13 { // Create one keyshare for the first default curve. If it is not // appropriate, the server should raise a HRR. defaultGroup := c.config.curvePreferences()[0] hs.privateKey, clientKS, err = c.generateKeyShare(defaultGroup) if err != nil { c.sendAlert(alertInternalError) return err } hello.keyShares = []keyShare{clientKS} // middlebox compatibility mode, provide a non-empty session ID hello.sessionId = make([]byte, 16) if _, err := io.ReadFull(c.config.rand(), hello.sessionId); err != nil { return errors.New("tls: short read from Rand: " + err.Error()) } } if err = hs.handshake(); err != nil { return err } // If we had a successful handshake and hs.session is different from // the one already cached - cache a new one if sessionCache != nil && hs.session != nil && session != hs.session && c.vers < VersionTLS13 { sessionCache.Put(cacheKey, hs.session) } return nil } // Does the handshake, either a full one or resumes old session. // Requires hs.c, hs.hello, and, optionally, hs.session to be set. func (hs *clientHandshakeState) handshake() error { c := hs.c // send ClientHello if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil { return err } msg, err := c.readHandshake() if err != nil { return err } var ok bool if hs.serverHello, ok = msg.(*serverHelloMsg); !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(hs.serverHello, msg) } if err = hs.pickTLSVersion(); err != nil { return err } if err = hs.pickCipherSuite(); err != nil { return err } var isResume bool if c.vers >= VersionTLS13 { hs.keySchedule = newKeySchedule13(hs.suite, c.config, hs.hello.random) hs.keySchedule.write(hs.hello.marshal()) hs.keySchedule.write(hs.serverHello.marshal()) } else { isResume, err = hs.processServerHello() if err != nil { return err } hs.finishedHash = newFinishedHash(c.vers, hs.suite) // No signatures of the handshake are needed in a resumption. // Otherwise, in a full handshake, if we don't have any certificates // configured then we will never send a CertificateVerify message and // thus no signatures are needed in that case either. if isResume || (len(c.config.Certificates) == 0 && c.config.GetClientCertificate == nil) { hs.finishedHash.discardHandshakeBuffer() } hs.finishedHash.Write(hs.hello.marshal()) hs.finishedHash.Write(hs.serverHello.marshal()) } c.buffering = true if c.vers >= VersionTLS13 { if err := hs.doTLS13Handshake(); err != nil { return err } if _, err := c.flush(); err != nil { return err } } else if isResume { if err := hs.establishKeys(); err != nil { return err } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(c.serverFinished[:]); err != nil { return err } c.clientFinishedIsFirst = false if err := hs.sendFinished(c.clientFinished[:]); err != nil { return err } if _, err := c.flush(); err != nil { return err } } else { if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.sendFinished(c.clientFinished[:]); err != nil { return err } if _, err := c.flush(); err != nil { return err } c.clientFinishedIsFirst = true if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(c.serverFinished[:]); err != nil { return err } } c.didResume = isResume c.phase = handshakeConfirmed atomic.StoreInt32(&c.handshakeConfirmed, 1) c.handshakeComplete = true return nil } func (hs *clientHandshakeState) pickTLSVersion() error { vers, ok := hs.c.config.pickVersion([]uint16{hs.serverHello.vers}) if !ok || vers < VersionTLS10 { // TLS 1.0 is the minimum version supported as a client. hs.c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server selected unsupported protocol version %x", hs.serverHello.vers) } hs.c.vers = vers hs.c.haveVers = true return nil } func (hs *clientHandshakeState) pickCipherSuite() error { if hs.suite = mutualCipherSuite(hs.hello.cipherSuites, hs.serverHello.cipherSuite); hs.suite == nil { hs.c.sendAlert(alertHandshakeFailure) return errors.New("tls: server chose an unconfigured cipher suite") } // Check that the chosen cipher suite matches the protocol version. if hs.c.vers >= VersionTLS13 && hs.suite.flags&suiteTLS13 == 0 || hs.c.vers < VersionTLS13 && hs.suite.flags&suiteTLS13 != 0 { hs.c.sendAlert(alertHandshakeFailure) return errors.New("tls: server chose an inappropriate cipher suite") } hs.c.cipherSuite = hs.suite.id return nil } // processCertsFromServer takes a chain of server certificates from a // Certificate message and verifies them. func (hs *clientHandshakeState) processCertsFromServer(certificates [][]byte) error { c := hs.c certs := make([]*x509.Certificate, len(certificates)) for i, asn1Data := range certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: failed to parse certificate from server: " + err.Error()) } certs[i] = cert } if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for i, cert := range certs { if i == 0 { continue } opts.Intermediates.AddCert(cert) } var err error c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return err } } if c.config.VerifyPeerCertificate != nil { if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil { c.sendAlert(alertBadCertificate) return err } } switch certs[0].PublicKey.(type) { case *rsa.PublicKey, *ecdsa.PublicKey: break default: c.sendAlert(alertUnsupportedCertificate) return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey) } c.peerCertificates = certs return nil } // processDelegatedCredentialFromServer unmarshals the delegated credential // offered by the server (if present) and validates it using the peer // certificate and the signature scheme (`scheme`) indicated by the server in // the "signature_scheme" extension. func (hs *clientHandshakeState) processDelegatedCredentialFromServer(serialized []byte, scheme SignatureScheme) error { c := hs.c var dc *delegatedCredential var err error if serialized != nil { // Assert that the DC extension was indicated by the client. if !hs.hello.delegatedCredential { c.sendAlert(alertUnexpectedMessage) return errors.New("tls: got delegated credential extension without indication") } // Parse the delegated credential. dc, err = unmarshalDelegatedCredential(serialized) if err != nil { c.sendAlert(alertDecodeError) return fmt.Errorf("tls: delegated credential: %s", err) } } if dc != nil && !c.config.InsecureSkipVerify { if v, err := dc.validate(c.peerCertificates[0], c.config.time()); err != nil { c.sendAlert(alertIllegalParameter) return fmt.Errorf("delegated credential: %s", err) } else if !v { c.sendAlert(alertIllegalParameter) return errors.New("delegated credential: signature invalid") } else if dc.cred.expectedVersion != hs.c.vers { c.sendAlert(alertIllegalParameter) return errors.New("delegated credential: protocol version mismatch") } else if dc.cred.expectedCertVerifyAlgorithm != scheme { c.sendAlert(alertIllegalParameter) return errors.New("delegated credential: signature scheme mismatch") } } c.verifiedDc = dc return nil } func (hs *clientHandshakeState) doFullHandshake() error { c := hs.c msg, err := c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.finishedHash.Write(certMsg.marshal()) if c.handshakes == 0 { // If this is the first handshake on a connection, process and // (optionally) verify the server's certificates. if err := hs.processCertsFromServer(certMsg.certificates); err != nil { return err } } else { // This is a renegotiation handshake. We require that the // server's identity (i.e. leaf certificate) is unchanged and // thus any previous trust decision is still valid. // // See https://mitls.org/pages/attacks/3SHAKE for the // motivation behind this requirement. if !bytes.Equal(c.peerCertificates[0].Raw, certMsg.certificates[0]) { c.sendAlert(alertBadCertificate) return errors.New("tls: server's identity changed during renegotiation") } } msg, err = c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if ok { // RFC4366 on Certificate Status Request: // The server MAY return a "certificate_status" message. if !hs.serverHello.ocspStapling { // If a server returns a "CertificateStatus" message, then the // server MUST have included an extension of type "status_request" // with empty "extension_data" in the extended server hello. c.sendAlert(alertUnexpectedMessage) return errors.New("tls: received unexpected CertificateStatus message") } hs.finishedHash.Write(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } msg, err = c.readHandshake() if err != nil { return err } } keyAgreement := hs.suite.ka(c.vers) // Set the public key used to verify the handshake. pk := c.peerCertificates[0].PublicKey skx, ok := msg.(*serverKeyExchangeMsg) if ok { hs.finishedHash.Write(skx.marshal()) err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, pk, skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } msg, err = c.readHandshake() if err != nil { return err } } var chainToSend *Certificate var certRequested bool certReq, ok := msg.(*certificateRequestMsg) if ok { certRequested = true hs.finishedHash.Write(certReq.marshal()) if chainToSend, err = hs.getCertificate(certReq); err != nil { c.sendAlert(alertInternalError) return err } msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(shd, msg) } hs.finishedHash.Write(shd.marshal()) // If the server requested a certificate then we have to send a // Certificate message, even if it's empty because we don't have a // certificate to send. if certRequested { certMsg = new(certificateMsg) certMsg.certificates = chainToSend.Certificate hs.finishedHash.Write(certMsg.marshal()) if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil { return err } } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, pk) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { hs.finishedHash.Write(ckx.marshal()) if _, err := c.writeRecord(recordTypeHandshake, ckx.marshal()); err != nil { return err } } c.useEMS = hs.serverHello.extendedMSSupported hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random, hs.finishedHash, c.useEMS) if err := c.config.writeKeyLog("CLIENT_RANDOM", hs.hello.random, hs.masterSecret); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to write to key log: " + err.Error()) } if chainToSend != nil && len(chainToSend.Certificate) > 0 { certVerify := &certificateVerifyMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } key, ok := chainToSend.PrivateKey.(crypto.Signer) if !ok { c.sendAlert(alertInternalError) return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", chainToSend.PrivateKey) } signatureAlgorithm, sigType, hashFunc, err := pickSignatureAlgorithm(key.Public(), certReq.supportedSignatureAlgorithms, hs.hello.supportedSignatureAlgorithms, c.vers) if err != nil { c.sendAlert(alertInternalError) return err } // SignatureAndHashAlgorithm was introduced in TLS 1.2. if certVerify.hasSignatureAndHash { certVerify.signatureAlgorithm = signatureAlgorithm } digest, err := hs.finishedHash.hashForClientCertificate(sigType, hashFunc, hs.masterSecret) if err != nil { c.sendAlert(alertInternalError) return err } signOpts := crypto.SignerOpts(hashFunc) if sigType == signatureRSAPSS { signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: hashFunc} } certVerify.signature, err = key.Sign(c.config.rand(), digest, signOpts) if err != nil { c.sendAlert(alertInternalError) return err } hs.finishedHash.Write(certVerify.marshal()) if _, err := c.writeRecord(recordTypeHandshake, certVerify.marshal()); err != nil { return err } } hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *clientHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.cipher != nil { clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(clientKey, clientIV) serverCipher = hs.suite.aead(serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) return nil } func (hs *clientHandshakeState) serverResumedSession() bool { // If the server responded with the same sessionId then it means the // sessionTicket is being used to resume a TLS session. return hs.session != nil && hs.hello.sessionId != nil && bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId) } func (hs *clientHandshakeState) processServerHello() (bool, error) { c := hs.c if hs.serverHello.compressionMethod != compressionNone { c.sendAlert(alertUnexpectedMessage) return false, errors.New("tls: server selected unsupported compression format") } if c.handshakes == 0 && hs.serverHello.secureRenegotiationSupported { c.secureRenegotiation = true if len(hs.serverHello.secureRenegotiation) != 0 { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: initial handshake had non-empty renegotiation extension") } } if c.handshakes > 0 && c.secureRenegotiation { var expectedSecureRenegotiation [24]byte copy(expectedSecureRenegotiation[:], c.clientFinished[:]) copy(expectedSecureRenegotiation[12:], c.serverFinished[:]) if !bytes.Equal(hs.serverHello.secureRenegotiation, expectedSecureRenegotiation[:]) { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: incorrect renegotiation extension contents") } } if hs.serverHello.extendedMSSupported { if hs.hello.extendedMSSupported { c.useEMS = true } else { // server wants to calculate master secret in a different way than client c.sendAlert(alertUnsupportedExtension) return false, errors.New("tls: unexpected extension (EMS) received in SH") } } clientDidNPN := hs.hello.nextProtoNeg clientDidALPN := len(hs.hello.alpnProtocols) > 0 serverHasNPN := hs.serverHello.nextProtoNeg serverHasALPN := len(hs.serverHello.alpnProtocol) > 0 if !clientDidNPN && serverHasNPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server advertised unrequested NPN extension") } if !clientDidALPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server advertised unrequested ALPN extension") } if serverHasNPN && serverHasALPN { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server advertised both NPN and ALPN extensions") } if serverHasALPN { c.clientProtocol = hs.serverHello.alpnProtocol c.clientProtocolFallback = false } c.scts = hs.serverHello.scts if !hs.serverResumedSession() { return false, nil } if hs.session.useEMS != c.useEMS { return false, errors.New("differing EMS state") } if hs.session.vers != c.vers { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server resumed a session with a different version") } if hs.session.cipherSuite != hs.suite.id { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server resumed a session with a different cipher suite") } // Restore masterSecret and peerCerts from previous state hs.masterSecret = hs.session.masterSecret c.peerCertificates = hs.session.serverCertificates c.verifiedChains = hs.session.verifiedChains return true, nil } func (hs *clientHandshakeState) readFinished(out []byte) error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if c.in.err != nil { return c.in.err } msg, err := c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } verify := hs.finishedHash.serverSum(hs.masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertDecryptError) return errors.New("tls: server's Finished message was incorrect") } hs.finishedHash.Write(serverFinished.marshal()) copy(out, verify) return nil } func (hs *clientHandshakeState) readSessionTicket() error { if !hs.serverHello.ticketSupported { return nil } c := hs.c msg, err := c.readHandshake() if err != nil { return err } sessionTicketMsg, ok := msg.(*newSessionTicketMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(sessionTicketMsg, msg) } hs.finishedHash.Write(sessionTicketMsg.marshal()) hs.session = &ClientSessionState{ sessionTicket: sessionTicketMsg.ticket, vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, serverCertificates: c.peerCertificates, verifiedChains: c.verifiedChains, useEMS: c.useEMS, } return nil } func (hs *clientHandshakeState) sendFinished(out []byte) error { c := hs.c if _, err := c.writeRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil { return err } if hs.serverHello.nextProtoNeg { nextProto := new(nextProtoMsg) proto, fallback := mutualProtocol(c.config.NextProtos, hs.serverHello.nextProtos) nextProto.proto = proto c.clientProtocol = proto c.clientProtocolFallback = fallback hs.finishedHash.Write(nextProto.marshal()) if _, err := c.writeRecord(recordTypeHandshake, nextProto.marshal()); err != nil { return err } } finished := new(finishedMsg) finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret) hs.finishedHash.Write(finished.marshal()) if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil { return err } copy(out, finished.verifyData) return nil } // tls11SignatureSchemes contains the signature schemes that we synthesise for // a TLS <= 1.1 connection, based on the supported certificate types. var tls11SignatureSchemes = []SignatureScheme{ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1} const ( // tls11SignatureSchemesNumECDSA is the number of initial elements of // tls11SignatureSchemes that use ECDSA. tls11SignatureSchemesNumECDSA = 3 // tls11SignatureSchemesNumRSA is the number of trailing elements of // tls11SignatureSchemes that use RSA. tls11SignatureSchemesNumRSA = 4 ) func (hs *clientHandshakeState) getCertificate(certReq *certificateRequestMsg) (*Certificate, error) { c := hs.c var rsaAvail, ecdsaAvail bool for _, certType := range certReq.certificateTypes { switch certType { case certTypeRSASign: rsaAvail = true case certTypeECDSASign: ecdsaAvail = true } } if c.config.GetClientCertificate != nil { var signatureSchemes []SignatureScheme if !certReq.hasSignatureAndHash { // Prior to TLS 1.2, the signature schemes were not // included in the certificate request message. In this // case we use a plausible list based on the acceptable // certificate types. signatureSchemes = tls11SignatureSchemes if !ecdsaAvail { signatureSchemes = signatureSchemes[tls11SignatureSchemesNumECDSA:] } if !rsaAvail { signatureSchemes = signatureSchemes[:len(signatureSchemes)-tls11SignatureSchemesNumRSA] } } else { signatureSchemes = certReq.supportedSignatureAlgorithms } return c.config.GetClientCertificate(&CertificateRequestInfo{ AcceptableCAs: certReq.certificateAuthorities, SignatureSchemes: signatureSchemes, }) } // RFC 4346 on the certificateAuthorities field: A list of the // distinguished names of acceptable certificate authorities. // These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; // thus, this message can be used to describe both known roots // and a desired authorization space. If the // certificate_authorities list is empty then the client MAY // send any certificate of the appropriate // ClientCertificateType, unless there is some external // arrangement to the contrary. // We need to search our list of client certs for one // where SignatureAlgorithm is acceptable to the server and the // Issuer is in certReq.certificateAuthorities findCert: for i, chain := range c.config.Certificates { if !rsaAvail && !ecdsaAvail { continue } for j, cert := range chain.Certificate { x509Cert := chain.Leaf // parse the certificate if this isn't the leaf // node, or if chain.Leaf was nil if j != 0 || x509Cert == nil { var err error if x509Cert, err = x509.ParseCertificate(cert); err != nil { c.sendAlert(alertInternalError) return nil, errors.New("tls: failed to parse client certificate #" + strconv.Itoa(i) + ": " + err.Error()) } } switch { case rsaAvail && x509Cert.PublicKeyAlgorithm == x509.RSA: case ecdsaAvail && x509Cert.PublicKeyAlgorithm == x509.ECDSA: default: continue findCert } if len(certReq.certificateAuthorities) == 0 { // they gave us an empty list, so just take the // first cert from c.config.Certificates return &chain, nil } for _, ca := range certReq.certificateAuthorities { if bytes.Equal(x509Cert.RawIssuer, ca) { return &chain, nil } } } } // No acceptable certificate found. Don't send a certificate. return new(Certificate), nil } // clientSessionCacheKey returns a key used to cache sessionTickets that could // be used to resume previously negotiated TLS sessions with a server. func clientSessionCacheKey(serverAddr net.Addr, config *Config) string { if len(config.ServerName) > 0 { return config.ServerName } return serverAddr.String() } // mutualProtocol finds the mutual Next Protocol Negotiation or ALPN protocol // given list of possible protocols and a list of the preference order. The // first list must not be empty. It returns the resulting protocol and flag // indicating if the fallback case was reached. func mutualProtocol(protos, preferenceProtos []string) (string, bool) { for _, s := range preferenceProtos { for _, c := range protos { if s == c { return s, false } } } return protos[0], true } // hostnameInSNI converts name into an appropriate hostname for SNI. // Literal IP addresses and absolute FQDNs are not permitted as SNI values. // See https://tools.ietf.org/html/rfc6066#section-3. func hostnameInSNI(name string) string { host := name if len(host) > 0 && host[0] == '[' && host[len(host)-1] == ']' { host = host[1 : len(host)-1] } if i := strings.LastIndex(host, "%"); i > 0 { host = host[:i] } if net.ParseIP(host) != nil { return "" } for len(name) > 0 && name[len(name)-1] == '.' { name = name[:len(name)-1] } return name }