package tls import ( "crypto/hmac" "crypto/sha256" "crypto/subtle" "encoding/binary" "io" "math/bits" ) const ( PublicKeySize = modQBytes CiphertextSize = modQBytes ) const ( N = 701 Q = 8192 mod3Bytes = 140 modQBytes = 1138 ) const ( bitsPerWord = bits.UintSize wordsPerPoly = (N + bitsPerWord - 1) / bitsPerWord fullWordsPerPoly = N / bitsPerWord bitsInLastWord = N % bitsPerWord ) // poly3 represents a degree-N polynomial over GF(3). Each coefficient is // bitsliced across the |s| and |a| arrays, like this: // // s | a | value // ----------------- // 0 | 0 | 0 // 0 | 1 | 1 // 1 | 0 | 2 (aka -1) // 1 | 1 | // // ('s' is for sign, and 'a' is just a letter.) // // Once bitsliced as such, the following circuits can be used to implement // addition and multiplication mod 3: // // (s3, a3) = (s1, a1) × (s2, a2) // s3 = (s2 ∧ a1) ⊕ (s1 ∧ a2) // a3 = (s1 ∧ s2) ⊕ (a1 ∧ a2) // // (s3, a3) = (s1, a1) + (s2, a2) // t1 = ~(s1 ∨ a1) // t2 = ~(s2 ∨ a2) // s3 = (a1 ∧ a2) ⊕ (t1 ∧ s2) ⊕ (t2 ∧ s1) // a3 = (s1 ∧ s2) ⊕ (t1 ∧ a2) ⊕ (t2 ∧ a1) // // Negating a value just involves swapping s and a. type poly3 struct { s [wordsPerPoly]uint a [wordsPerPoly]uint } func (p *poly3) trim() { p.s[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 p.a[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 } func (p *poly3) zero() { for i := range p.a { p.s[i] = 0 p.a[i] = 0 } } func (p *poly3) fromDiscrete(in *poly) { var shift uint s := p.s[:] a := p.a[:] s[0] = 0 a[0] = 0 for _, v := range in { s[0] >>= 1 s[0] |= uint((v>>1)&1) << (bitsPerWord - 1) a[0] >>= 1 a[0] |= uint(v&1) << (bitsPerWord - 1) shift++ if shift == bitsPerWord { s = s[1:] a = a[1:] s[0] = 0 a[0] = 0 shift = 0 } } a[0] >>= bitsPerWord - shift s[0] >>= bitsPerWord - shift } func (p *poly3) fromModQ(in *poly) int { var shift uint s := p.s[:] a := p.a[:] s[0] = 0 a[0] = 0 ok := 1 for _, v := range in { vMod3, vOk := modQToMod3(v) ok &= vOk s[0] >>= 1 s[0] |= uint((vMod3>>1)&1) << (bitsPerWord - 1) a[0] >>= 1 a[0] |= uint(vMod3&1) << (bitsPerWord - 1) shift++ if shift == bitsPerWord { s = s[1:] a = a[1:] s[0] = 0 a[0] = 0 shift = 0 } } a[0] >>= bitsPerWord - shift s[0] >>= bitsPerWord - shift return ok } func (p *poly3) fromDiscreteMod3(in *poly) { var shift uint s := p.s[:] a := p.a[:] s[0] = 0 a[0] = 0 for _, v := range in { // This duplicates the 13th bit upwards to the top of the // uint16, essentially treating it as a sign bit and converting // into a signed int16. The signed value is reduced mod 3, // yeilding {-2, -1, 0, 1, 2}. v = uint16((int16(v<<3)>>3)%3) & 7 // We want to map v thus: // {-2, -1, 0, 1, 2} -> {1, 2, 0, 1, 2}. We take the bottom // three bits and then the constants below, when shifted by // those three bits, perform the required mapping. s[0] >>= 1 s[0] |= (0xbc >> v) << (bitsPerWord - 1) a[0] >>= 1 a[0] |= (0x7a >> v) << (bitsPerWord - 1) shift++ if shift == bitsPerWord { s = s[1:] a = a[1:] s[0] = 0 a[0] = 0 shift = 0 } } a[0] >>= bitsPerWord - shift s[0] >>= bitsPerWord - shift } func (p *poly3) marshal(out []byte) { s := p.s[:] a := p.a[:] sw := s[0] aw := a[0] var shift int for i := 0; i < 700; i += 5 { acc, scale := 0, 1 for j := 0; j < 5; j++ { v := int(aw&1) | int(sw&1)<<1 acc += scale * v scale *= 3 shift++ if shift == bitsPerWord { s = s[1:] a = a[1:] sw = s[0] aw = a[0] shift = 0 } else { sw >>= 1 aw >>= 1 } } out[0] = byte(acc) out = out[1:] } } func (p *poly) fromMod2(in *poly2) { var shift uint words := in[:] word := words[0] for i := range p { p[i] = uint16(word & 1) word >>= 1 shift++ if shift == bitsPerWord { words = words[1:] word = words[0] shift = 0 } } } func (p *poly) fromMod3(in *poly3) { var shift uint s := in.s[:] a := in.a[:] sw := s[0] aw := a[0] for i := range p { p[i] = uint16(aw&1 | (sw&1)<<1) aw >>= 1 sw >>= 1 shift++ if shift == bitsPerWord { a = a[1:] s = s[1:] aw = a[0] sw = s[0] shift = 0 } } } func (p *poly) fromMod3ToModQ(in *poly3) { var shift uint s := in.s[:] a := in.a[:] sw := s[0] aw := a[0] for i := range p { p[i] = mod3ToModQ(uint16(aw&1 | (sw&1)<<1)) aw >>= 1 sw >>= 1 shift++ if shift == bitsPerWord { a = a[1:] s = s[1:] aw = a[0] sw = s[0] shift = 0 } } } func lsbToAll(v uint) uint { return uint(int(v<<(bitsPerWord-1)) >> (bitsPerWord - 1)) } func (p *poly3) mulConst(ms, ma uint) { ms = lsbToAll(ms) ma = lsbToAll(ma) for i := range p.a { p.s[i], p.a[i] = (ma&p.s[i])^(ms&p.a[i]), (ma&p.a[i])^(ms&p.s[i]) } } func cmovWords(out, in *[wordsPerPoly]uint, mov uint) { for i := range out { out[i] = (out[i] & ^mov) | (in[i] & mov) } } func rotWords(out, in *[wordsPerPoly]uint, bits uint) { start := bits / bitsPerWord n := (N - bits) / bitsPerWord for i := uint(0); i < n; i++ { out[i] = in[start+i] } carry := in[wordsPerPoly-1] for i := uint(0); i < start; i++ { out[n+i] = carry | in[i]<> (bitsPerWord - bitsInLastWord) } out[wordsPerPoly-1] = carry } // rotBits right-rotates the bits in |in|. bits must be a non-zero power of two // and less than bitsPerWord. func rotBits(out, in *[wordsPerPoly]uint, bits uint) { if bits == 0 || (bits&(bits-1)) != 0 || bits > bitsPerWord/2 || bitsInLastWord < bitsPerWord/2 { panic("internal error") } carry := in[wordsPerPoly-1] << (bitsPerWord - bits) for i := wordsPerPoly - 2; i >= 0; i-- { out[i] = carry | in[i]>>bits carry = in[i] << (bitsPerWord - bits) } out[wordsPerPoly-1] = carry>>(bitsPerWord-bitsInLastWord) | in[wordsPerPoly-1]>>bits } func (p *poly3) rotWords(bits uint, in *poly3) { rotWords(&p.s, &in.s, bits) rotWords(&p.a, &in.a, bits) } func (p *poly3) rotBits(bits uint, in *poly3) { rotBits(&p.s, &in.s, bits) rotBits(&p.a, &in.a, bits) } func (p *poly3) cmov(in *poly3, mov uint) { cmovWords(&p.s, &in.s, mov) cmovWords(&p.a, &in.a, mov) } func (p *poly3) rot(bits uint) { if bits > N { panic("invalid") } var shifted poly3 shift := uint(9) for ; (1 << shift) >= bitsPerWord; shift-- { shifted.rotWords(1<>shift)) } for ; shift < 9; shift-- { shifted.rotBits(1<>shift)) } } func (p *poly3) fmadd(ms, ma uint, in *poly3) { ms = lsbToAll(ms) ma = lsbToAll(ma) for i := range p.a { products := (ma & in.s[i]) ^ (ms & in.a[i]) producta := (ma & in.a[i]) ^ (ms & in.s[i]) ns1Ana1 := ^p.s[i] & ^p.a[i] ns2Ana2 := ^products & ^producta p.s[i], p.a[i] = (p.a[i]&producta)^(ns1Ana1&products)^(p.s[i]&ns2Ana2), (p.s[i]&products)^(ns1Ana1&producta)^(p.a[i]&ns2Ana2) } } func (p *poly3) modPhiN() { factora := uint(int(p.s[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1)) factors := uint(int(p.a[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1)) ns2Ana2 := ^factors & ^factora for i := range p.s { ns1Ana1 := ^p.s[i] & ^p.a[i] p.s[i], p.a[i] = (p.a[i]&factora)^(ns1Ana1&factors)^(p.s[i]&ns2Ana2), (p.s[i]&factors)^(ns1Ana1&factora)^(p.a[i]&ns2Ana2) } } func (p *poly3) cswap(other *poly3, swap uint) { for i := range p.s { sums := swap & (p.s[i] ^ other.s[i]) p.s[i] ^= sums other.s[i] ^= sums suma := swap & (p.a[i] ^ other.a[i]) p.a[i] ^= suma other.a[i] ^= suma } } func (p *poly3) mulx() { carrys := (p.s[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1 carrya := (p.a[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1 for i := range p.s { outCarrys := p.s[i] >> (bitsPerWord - 1) outCarrya := p.a[i] >> (bitsPerWord - 1) p.s[i] <<= 1 p.a[i] <<= 1 p.s[i] |= carrys p.a[i] |= carrya carrys = outCarrys carrya = outCarrya } } func (p *poly3) divx() { var carrys, carrya uint for i := len(p.s) - 1; i >= 0; i-- { outCarrys := p.s[i] & 1 outCarrya := p.a[i] & 1 p.s[i] >>= 1 p.a[i] >>= 1 p.s[i] |= carrys << (bitsPerWord - 1) p.a[i] |= carrya << (bitsPerWord - 1) carrys = outCarrys carrya = outCarrya } } type poly2 [wordsPerPoly]uint func (p *poly2) fromDiscrete(in *poly) { var shift uint words := p[:] words[0] = 0 for _, v := range in { words[0] >>= 1 words[0] |= uint(v&1) << (bitsPerWord - 1) shift++ if shift == bitsPerWord { words = words[1:] words[0] = 0 shift = 0 } } words[0] >>= bitsPerWord - shift } func (p *poly2) setPhiN() { for i := range p { p[i] = ^uint(0) } p[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1 } func (p *poly2) cswap(other *poly2, swap uint) { for i := range p { sum := swap & (p[i] ^ other[i]) p[i] ^= sum other[i] ^= sum } } func (p *poly2) fmadd(m uint, in *poly2) { m = ^(m - 1) for i := range p { p[i] ^= in[i] & m } } func (p *poly2) lshift1() { var carry uint for i := range p { nextCarry := p[i] >> (bitsPerWord - 1) p[i] <<= 1 p[i] |= carry carry = nextCarry } } func (p *poly2) rshift1() { var carry uint for i := len(p) - 1; i >= 0; i-- { nextCarry := p[i] & 1 p[i] >>= 1 p[i] |= carry << (bitsPerWord - 1) carry = nextCarry } } func (p *poly2) rot(bits uint) { if bits > N { panic("invalid") } var shifted [wordsPerPoly]uint out := (*[wordsPerPoly]uint)(p) shift := uint(9) for ; (1 << shift) >= bitsPerWord; shift-- { rotWords(&shifted, out, 1<>shift)) } for ; shift < 9; shift-- { rotBits(&shifted, out, 1<>shift)) } } type poly [N]uint16 func (in *poly) marshal(out []byte) { p := in[:] for len(p) >= 8 { out[0] = byte(p[0]) out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5) out[2] = byte(p[1] >> 3) out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2) out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7) out[5] = byte(p[3] >> 1) out[6] = byte(p[3]>>9) | byte((p[4]&0x0f)<<4) out[7] = byte(p[4] >> 4) out[8] = byte(p[4]>>12) | byte((p[5]&0x7f)<<1) out[9] = byte(p[5]>>7) | byte((p[6]&0x03)<<6) out[10] = byte(p[6] >> 2) out[11] = byte(p[6]>>10) | byte((p[7]&0x1f)<<3) out[12] = byte(p[7] >> 5) p = p[8:] out = out[13:] } // There are four remaining values. out[0] = byte(p[0]) out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5) out[2] = byte(p[1] >> 3) out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2) out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7) out[5] = byte(p[3] >> 1) out[6] = byte(p[3] >> 9) } func (out *poly) unmarshal(in []byte) bool { p := out[:] for i := 0; i < 87; i++ { p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8 p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11 p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6 p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9 p[4] = uint16(in[6]>>4) | uint16(in[7])<<4 | uint16(in[8]&1)<<12 p[5] = uint16(in[8]>>1) | uint16(in[9]&0x3f)<<7 p[6] = uint16(in[9]>>6) | uint16(in[10])<<2 | uint16(in[11]&7)<<10 p[7] = uint16(in[11]>>3) | uint16(in[12])<<5 p = p[8:] in = in[13:] } // There are four coefficients left over p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8 p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11 p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6 p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9 if in[6]&0xf0 != 0 { return false } out[N-1] = 0 var top int for _, v := range out { top += int(v) } out[N-1] = uint16(-top) % Q return true } func (in *poly) marshalS3(out []byte) { p := in[:] for len(p) >= 5 { out[0] = byte(p[0] + p[1]*3 + p[2]*9 + p[3]*27 + p[4]*81) out = out[1:] p = p[5:] } } func (out *poly) unmarshalS3(in []byte) bool { p := out[:] for i := 0; i < 140; i++ { c := in[0] if c >= 243 { return false } p[0] = uint16(c % 3) p[1] = uint16((c / 3) % 3) p[2] = uint16((c / 9) % 3) p[3] = uint16((c / 27) % 3) p[4] = uint16((c / 81) % 3) p = p[5:] in = in[1:] } out[N-1] = 0 return true } func (p *poly) modPhiN() { for i := range p { p[i] = (p[i] + Q - p[N-1]) % Q } } func (out *poly) shortSample(in []byte) { // b a result // 00 00 00 // 00 01 01 // 00 10 10 // 00 11 11 // 01 00 10 // 01 01 00 // 01 10 01 // 01 11 11 // 10 00 01 // 10 01 10 // 10 10 00 // 10 11 11 // 11 00 11 // 11 01 11 // 11 10 11 // 11 11 11 // 1111 1111 1100 1001 1101 0010 1110 0100 // f f c 9 d 2 e 4 const lookup = uint32(0xffc9d2e4) p := out[:] for i := 0; i < 87; i++ { v := binary.LittleEndian.Uint32(in) v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555) for j := 0; j < 8; j++ { p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3) v2 >>= 4 } p = p[8:] in = in[4:] } // There are four values remaining. v := binary.LittleEndian.Uint32(in) v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555) for j := 0; j < 4; j++ { p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3) v2 >>= 4 } out[N-1] = 0 } func (out *poly) shortSamplePlus(in []byte) { out.shortSample(in) var sum uint16 for i := 0; i < N-1; i++ { sum += mod3ResultToModQ(out[i] * out[i+1]) } scale := 1 + (1 & (sum >> 12)) for i := 0; i < len(out); i += 2 { out[i] = (out[i] * scale) % 3 } } func mul(out, scratch, a, b []uint16) { const schoolbookLimit = 32 if len(a) < schoolbookLimit { for i := 0; i < len(a)*2; i++ { out[i] = 0 } for i := range a { for j := range b { out[i+j] += a[i] * b[j] } } return } lowLen := len(a) / 2 highLen := len(a) - lowLen aLow, aHigh := a[:lowLen], a[lowLen:] bLow, bHigh := b[:lowLen], b[lowLen:] for i := 0; i < lowLen; i++ { out[i] = aHigh[i] + aLow[i] } if highLen != lowLen { out[lowLen] = aHigh[lowLen] } for i := 0; i < lowLen; i++ { out[highLen+i] = bHigh[i] + bLow[i] } if highLen != lowLen { out[highLen+lowLen] = bHigh[lowLen] } mul(scratch, scratch[2*highLen:], out[:highLen], out[highLen:highLen*2]) mul(out[lowLen*2:], scratch[2*highLen:], aHigh, bHigh) mul(out, scratch[2*highLen:], aLow, bLow) for i := 0; i < lowLen*2; i++ { scratch[i] -= out[i] + out[lowLen*2+i] } if lowLen != highLen { scratch[lowLen*2] -= out[lowLen*4] } for i := 0; i < 2*highLen; i++ { out[lowLen+i] += scratch[i] } } func (out *poly) mul(a, b *poly) { var prod, scratch [2 * N]uint16 mul(prod[:], scratch[:], a[:], b[:]) for i := range out { out[i] = (prod[i] + prod[i+N]) % Q } } func (p3 *poly3) mulMod3(x, y *poly3) { // (𝑥^n - 1) is a multiple of Φ(N) so we can work mod (𝑥^n - 1) here and // (reduce mod Φ(N) afterwards. x3 := *x y3 := *y s := x3.s[:] a := x3.a[:] sw := s[0] aw := a[0] p3.zero() var shift uint for i := 0; i < N; i++ { p3.fmadd(sw, aw, &y3) sw >>= 1 aw >>= 1 shift++ if shift == bitsPerWord { s = s[1:] a = a[1:] sw = s[0] aw = a[0] shift = 0 } y3.mulx() } p3.modPhiN() } // mod3ToModQ maps {0, 1, 2, 3} to {0, 1, Q-1, 0xffff} // The case of n == 3 should never happen but is included so that modQToMod3 // can easily catch invalid inputs. func mod3ToModQ(n uint16) uint16 { return uint16(uint64(0xffff1fff00010000) >> (16 * n)) } // modQToMod3 maps {0, 1, Q-1} to {(0, 0), (0, 1), (1, 0)} and also returns an int // which is one if the input is in range and zero otherwise. func modQToMod3(n uint16) (uint16, int) { result := (n&3 - (n>>1)&1) return result, subtle.ConstantTimeEq(int32(mod3ToModQ(result)), int32(n)) } // mod3ResultToModQ maps {0, 1, 2, 4} to {0, 1, Q-1, 1} func mod3ResultToModQ(n uint16) uint16 { return ((((uint16(0x13) >> n) & 1) - 1) & 0x1fff) | ((uint16(0x12) >> n) & 1) //shift := (uint(0x324) >> (2 * n)) & 3 //return uint16(uint64(0x00011fff00010000) >> (16 * shift)) } // mulXMinus1 sets out to a×(𝑥 - 1) mod (𝑥^n - 1) func (out *poly) mulXMinus1() { // Multiplying by (𝑥 - 1) means negating each coefficient and adding in // the value of the previous one. origOut700 := out[700] for i := N - 1; i > 0; i-- { out[i] = (Q - out[i] + out[i-1]) % Q } out[0] = (Q - out[0] + origOut700) % Q } func (out *poly) lift(a *poly) { // We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the // Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime). // 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up: // // R. = PolynomialRing(GF(3)…) // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n)) // list(inv)[:15] // [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2] // // This three-element pattern of coefficients repeats for the whole // polynomial. // // Next define the overbar operator such that z̅ = z[0] + // reverse(z[1:]). (Index zero of a polynomial here is the coefficient // of the constant term. So index one is the coefficient of 𝑥 and so // on.) // // A less odd way to define this is to see that z̅ negates the indexes, // so z̅[0] = z[-0], z̅[1] = z[-1] and so on. // // The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = , vz[1] = , …. (Where is the inner product: the sum // of the point-wise products.) Although we calculated the inverse mod // Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end. // (That's because (𝑥^N - 1) is a multiple of Φ(N).) // // When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation // of the list of coefficients. // // Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like: // // def reverse(xs): // suffix = list(xs[1:]) // suffix.reverse() // return [xs[0]] + suffix // // def rotate(xs): // return [xs[-1]] + xs[:-1] // // zoverbar = reverse(list(inv) + [0]) // xzoverbar = rotate(reverse(list(inv) + [0])) // x2zoverbar = rotate(rotate(reverse(list(inv) + [0]))) // // zoverbar[:15] // [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1] // xzoverbar[:15] // [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0] // x2zoverbar[:15] // [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] // // (For a formula for z̅, see lemma two of appendix B.) // // After the first three elements have been taken care of, all then have // a repeating three-element cycle. The next value (𝑥^3z̅) involves // three rotations of the first pattern, thus the three-element cycle // lines up. However, the discontinuity in the first three elements // obviously moves to a different position. Consider the difference // between 𝑥^3z̅ and z̅: // // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15] // [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] // // This pattern of differences is the same for all elements, although it // obviously moves right with the rotations. // // From this, we reach algorithm eight of appendix B. // Handle the first three elements of the inner products. out[0] = a[0] + a[2] out[1] = a[1] out[2] = 2*a[0] + a[2] // Use the repeating pattern to complete the first three inner products. for i := 3; i < 699; i += 3 { out[0] += 2*a[i] + a[i+2] out[1] += a[i] + 2*a[i+1] out[2] += a[i+1] + 2*a[i+2] } // Handle the fact that the three-element pattern doesn't fill the // polynomial exactly (since 701 isn't a multiple of three). out[2] += a[700] out[0] += 2 * a[699] out[1] += a[699] + 2*a[700] out[0] = out[0] % 3 out[1] = out[1] % 3 out[2] = out[2] % 3 // Calculate the remaining inner products by taking advantage of the // fact that the pattern repeats every three cycles and the pattern of // differences is moves with the rotation. for i := 3; i < N; i++ { // Add twice something is the same as subtracting when working // mod 3. Doing it this way avoids underflow. Underflow is bad // because "% 3" doesn't work correctly for negative numbers // here since underflow will wrap to 2^16-1 and 2^16 isn't a // multiple of three. out[i] = (out[i-3] + 2*(a[i-2]+a[i-1]+a[i])) % 3 } // Reduce mod Φ(N) by subtracting a multiple of out[700] from every // element and convert to mod Q. (See above about adding twice as // subtraction.) v := out[700] * 2 for i := range out { out[i] = mod3ToModQ((out[i] + v) % 3) } out.mulXMinus1() } func (a *poly) cswap(b *poly, swap uint16) { for i := range a { sum := swap & (a[i] ^ b[i]) a[i] ^= sum b[i] ^= sum } } func lt(a, b uint) uint { if a < b { return ^uint(0) } return 0 } func bsMul(s1, a1, s2, a2 uint) (s3, a3 uint) { s3 = (a1 & s2) ^ (s1 & a2) a3 = (a1 & a2) ^ (s1 & s2) return } func (out *poly3) invertMod3(in *poly3) { // This algorithm follows algorithm 10 in the paper. (Although note that // the paper appears to have a bug: k should start at zero, not one.) // The best explanation for why it works is in the "Why it works" // section of // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf. var k uint degF, degG := uint(N-1), uint(N-1) var b, c, g poly3 f := *in for i := range g.a { g.a[i] = ^uint(0) } b.a[0] = 1 var f0s, f0a uint stillGoing := ^uint(0) for i := 0; i < 2*(N-1)-1; i++ { ss, sa := bsMul(f.s[0], f.a[0], g.s[0], g.a[0]) ss, sa = sa&stillGoing&1, ss&stillGoing&1 shouldSwap := ^uint(int((ss|sa)-1)>>(bitsPerWord-1)) & lt(degF, degG) f.cswap(&g, shouldSwap) b.cswap(&c, shouldSwap) degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap) f.fmadd(ss, sa, &g) b.fmadd(ss, sa, &c) f.divx() f.s[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1 f.a[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1 c.mulx() c.s[0] &= ^uint(1) c.a[0] &= ^uint(1) degF-- k += 1 & stillGoing f0s = (stillGoing & f.s[0]) | (^stillGoing & f0s) f0a = (stillGoing & f.a[0]) | (^stillGoing & f0a) stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1)) } k -= N & lt(N, k) *out = b out.rot(k) out.mulConst(f0s, f0a) out.modPhiN() } func (out *poly) invertMod2(a *poly) { // This algorithm follows mix of algorithm 10 in the paper and the first // page of the PDF linked below. (Although note that the paper appears // to have a bug: k should start at zero, not one.) The best explanation // for why it works is in the "Why it works" section of // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf. var k uint degF, degG := uint(N-1), uint(N-1) var f poly2 f.fromDiscrete(a) var b, c, g poly2 g.setPhiN() b[0] = 1 stillGoing := ^uint(0) for i := 0; i < 2*(N-1)-1; i++ { s := uint(f[0]&1) & stillGoing shouldSwap := ^(s - 1) & lt(degF, degG) f.cswap(&g, shouldSwap) b.cswap(&c, shouldSwap) degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap) f.fmadd(s, &g) b.fmadd(s, &c) f.rshift1() c.lshift1() degF-- k += 1 & stillGoing stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1)) } k -= N & lt(N, k) b.rot(k) out.fromMod2(&b) } func (out *poly) invert(origA *poly) { // Inversion mod Q, which is done based on the result of inverting mod // 2. See the NTRU paper, page three. var a, tmp, tmp2, b poly b.invertMod2(origA) // Negate a. for i := range a { a[i] = Q - origA[i] } // We are working mod Q=2**13 and we need to iterate ceil(log_2(13)) // times, which is four. for i := 0; i < 4; i++ { tmp.mul(&a, &b) tmp[0] += 2 tmp2.mul(&b, &tmp) b = tmp2 } *out = b } type PublicKey struct { h poly } func ParsePublicKey(in []byte) (*PublicKey, bool) { ret := new(PublicKey) if !ret.h.unmarshal(in) { return nil, false } return ret, true } func (pub *PublicKey) Marshal() []byte { ret := make([]byte, modQBytes) pub.h.marshal(ret) return ret } func (pub *PublicKey) Encap(rand io.Reader) (ciphertext []byte, sharedKey []byte) { var randBytes [352 + 352]byte if _, err := io.ReadFull(rand, randBytes[:]); err != nil { panic("rand failed") } var m, r poly m.shortSample(randBytes[:352]) r.shortSample(randBytes[352:]) var mBytes, rBytes [mod3Bytes]byte m.marshalS3(mBytes[:]) r.marshalS3(rBytes[:]) ciphertext = pub.owf(&m, &r) h := sha256.New() h.Write([]byte("shared key\x00")) h.Write(mBytes[:]) h.Write(rBytes[:]) h.Write(ciphertext) sharedKey = h.Sum(nil) return ciphertext, sharedKey } func (pub *PublicKey) owf(m, r *poly) []byte { for i := range r { r[i] = mod3ToModQ(r[i]) } var mq poly mq.lift(m) var e poly e.mul(r, &pub.h) for i := range e { e[i] = (e[i] + mq[i]) % Q } ret := make([]byte, modQBytes) e.marshal(ret[:]) return ret } type PrivateKey struct { PublicKey f, fp poly3 hInv poly hmacKey [32]byte } func (priv *PrivateKey) Marshal() []byte { var ret [2*mod3Bytes + modQBytes]byte priv.f.marshal(ret[:]) priv.fp.marshal(ret[mod3Bytes:]) priv.h.marshal(ret[2*mod3Bytes:]) return ret[:] } func (priv *PrivateKey) Decap(ciphertext []byte) (sharedKey []byte, ok bool) { if len(ciphertext) != modQBytes { return nil, false } var e poly if !e.unmarshal(ciphertext) { return nil, false } var f poly f.fromMod3ToModQ(&priv.f) var v1, m poly v1.mul(&e, &f) var v13 poly3 v13.fromDiscreteMod3(&v1) // Note: v13 is not reduced mod phi(n). var m3 poly3 m3.mulMod3(&v13, &priv.fp) m3.modPhiN() m.fromMod3(&m3) var mLift, delta poly mLift.lift(&m) for i := range delta { delta[i] = (e[i] - mLift[i] + Q) % Q } delta.mul(&delta, &priv.hInv) delta.modPhiN() var r poly3 allOk := r.fromModQ(&delta) var mBytes, rBytes [mod3Bytes]byte m.marshalS3(mBytes[:]) r.marshal(rBytes[:]) var rPoly poly rPoly.fromMod3(&r) expectedCiphertext := priv.PublicKey.owf(&m, &rPoly) allOk &= subtle.ConstantTimeCompare(ciphertext, expectedCiphertext) hmacHash := hmac.New(sha256.New, priv.hmacKey[:]) hmacHash.Write(ciphertext) hmacDigest := hmacHash.Sum(nil) h := sha256.New() h.Write([]byte("shared key\x00")) h.Write(mBytes[:]) h.Write(rBytes[:]) h.Write(ciphertext) sharedKey = h.Sum(nil) mask := uint8(allOk - 1) for i := range sharedKey { sharedKey[i] = (sharedKey[i] & ^mask) | (hmacDigest[i] & mask) } return sharedKey, true } func GenerateKey(rand io.Reader) PrivateKey { var randBytes [352 + 352]byte if _, err := io.ReadFull(rand, randBytes[:]); err != nil { panic("rand failed") } var f poly f.shortSamplePlus(randBytes[:352]) var priv PrivateKey priv.f.fromDiscrete(&f) priv.fp.invertMod3(&priv.f) var g poly g.shortSamplePlus(randBytes[352:]) var pgPhi1 poly for i := range g { pgPhi1[i] = mod3ToModQ(g[i]) } for i := range pgPhi1 { pgPhi1[i] = (pgPhi1[i] * 3) % Q } pgPhi1.mulXMinus1() var fModQ poly fModQ.fromMod3ToModQ(&priv.f) var pfgPhi1 poly pfgPhi1.mul(&fModQ, &pgPhi1) var i poly i.invert(&pfgPhi1) priv.h.mul(&i, &pgPhi1) priv.h.mul(&priv.h, &pgPhi1) priv.hInv.mul(&i, &fModQ) priv.hInv.mul(&priv.hInv, &fModQ) return priv }