// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package tls partially implements TLS 1.2, as specified in RFC 5246. package tls import ( "crypto" "crypto/ecdsa" "crypto/rsa" "crypto/x509" "encoding/pem" "errors" "io/ioutil" "net" "strings" ) // Server returns a new TLS server side connection // using conn as the underlying transport. // The configuration config must be non-nil and must have // at least one certificate. func Server(conn net.Conn, config *Config) *Conn { return &Conn{conn: conn, config: config} } // Client returns a new TLS client side connection // using conn as the underlying transport. // The config cannot be nil: users must set either ServerHostname or // InsecureSkipVerify in the config. func Client(conn net.Conn, config *Config) *Conn { return &Conn{conn: conn, config: config, isClient: true} } // A listener implements a network listener (net.Listener) for TLS connections. type listener struct { net.Listener config *Config } // Accept waits for and returns the next incoming TLS connection. // The returned connection c is a *tls.Conn. func (l *listener) Accept() (c net.Conn, err error) { c, err = l.Listener.Accept() if err != nil { return } c = Server(c, l.config) return } // NewListener creates a Listener which accepts connections from an inner // Listener and wraps each connection with Server. // The configuration config must be non-nil and must have // at least one certificate. func NewListener(inner net.Listener, config *Config) net.Listener { l := new(listener) l.Listener = inner l.config = config return l } // Listen creates a TLS listener accepting connections on the // given network address using net.Listen. // The configuration config must be non-nil and must have // at least one certificate. func Listen(network, laddr string, config *Config) (net.Listener, error) { if config == nil || len(config.Certificates) == 0 { return nil, errors.New("tls.Listen: no certificates in configuration") } l, err := net.Listen(network, laddr) if err != nil { return nil, err } return NewListener(l, config), nil } // Dial connects to the given network address using net.Dial // and then initiates a TLS handshake, returning the resulting // TLS connection. // Dial interprets a nil configuration as equivalent to // the zero configuration; see the documentation of Config // for the defaults. func Dial(network, addr string, config *Config) (*Conn, error) { raddr := addr c, err := net.Dial(network, raddr) if err != nil { return nil, err } colonPos := strings.LastIndex(raddr, ":") if colonPos == -1 { colonPos = len(raddr) } hostname := raddr[:colonPos] if config == nil { config = defaultConfig() } // If no ServerName is set, infer the ServerName // from the hostname we're connecting to. if config.ServerName == "" { // Make a copy to avoid polluting argument or default. c := *config c.ServerName = hostname config = &c } conn := Client(c, config) if err = conn.Handshake(); err != nil { c.Close() return nil, err } return conn, nil } // LoadX509KeyPair reads and parses a public/private key pair from a pair of // files. The files must contain PEM encoded data. func LoadX509KeyPair(certFile, keyFile string) (cert Certificate, err error) { certPEMBlock, err := ioutil.ReadFile(certFile) if err != nil { return } keyPEMBlock, err := ioutil.ReadFile(keyFile) if err != nil { return } return X509KeyPair(certPEMBlock, keyPEMBlock) } // X509KeyPair parses a public/private key pair from a pair of // PEM encoded data. func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (cert Certificate, err error) { var certDERBlock *pem.Block for { certDERBlock, certPEMBlock = pem.Decode(certPEMBlock) if certDERBlock == nil { break } if certDERBlock.Type == "CERTIFICATE" { cert.Certificate = append(cert.Certificate, certDERBlock.Bytes) } } if len(cert.Certificate) == 0 { err = errors.New("crypto/tls: failed to parse certificate PEM data") return } var keyDERBlock *pem.Block for { keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock) if keyDERBlock == nil { err = errors.New("crypto/tls: failed to parse key PEM data") return } if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") { break } } cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes) if err != nil { return } // We don't need to parse the public key for TLS, but we so do anyway // to check that it looks sane and matches the private key. x509Cert, err := x509.ParseCertificate(cert.Certificate[0]) if err != nil { return } switch pub := x509Cert.PublicKey.(type) { case *rsa.PublicKey: priv, ok := cert.PrivateKey.(*rsa.PrivateKey) if !ok { err = errors.New("crypto/tls: private key type does not match public key type") return } if pub.N.Cmp(priv.N) != 0 { err = errors.New("crypto/tls: private key does not match public key") return } case *ecdsa.PublicKey: priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey) if !ok { err = errors.New("crypto/tls: private key type does not match public key type") return } if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 { err = errors.New("crypto/tls: private key does not match public key") return } default: err = errors.New("crypto/tls: unknown public key algorithm") return } return } // Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates // PKCS#1 private keys by default, while OpenSSL 1.0.0 generates PKCS#8 keys. // OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three. func parsePrivateKey(der []byte) (crypto.PrivateKey, error) { if key, err := x509.ParsePKCS1PrivateKey(der); err == nil { return key, nil } if key, err := x509.ParsePKCS8PrivateKey(der); err == nil { switch key := key.(type) { case *rsa.PrivateKey, *ecdsa.PrivateKey: return key, nil default: return nil, errors.New("crypto/tls: found unknown private key type in PKCS#8 wrapping") } } if key, err := x509.ParseECPrivateKey(der); err == nil { return key, nil } return nil, errors.New("crypto/tls: failed to parse private key") }