// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "crypto" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "io" ) func (c *Conn) clientHandshake() error { finishedHash := newFinishedHash(versionTLS10) if c.config == nil { c.config = defaultConfig() } hello := &clientHelloMsg{ vers: maxVersion, cipherSuites: c.config.cipherSuites(), compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), ocspStapling: true, serverName: c.config.ServerName, supportedCurves: []uint16{curveP256, curveP384, curveP521}, supportedPoints: []uint8{pointFormatUncompressed}, nextProtoNeg: len(c.config.NextProtos) > 0, } t := uint32(c.config.time()) hello.random[0] = byte(t >> 24) hello.random[1] = byte(t >> 16) hello.random[2] = byte(t >> 8) hello.random[3] = byte(t) _, err := io.ReadFull(c.config.rand(), hello.random[4:]) if err != nil { c.sendAlert(alertInternalError) return errors.New("short read from Rand") } finishedHash.Write(hello.marshal()) c.writeRecord(recordTypeHandshake, hello.marshal()) msg, err := c.readHandshake() if err != nil { return err } serverHello, ok := msg.(*serverHelloMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(serverHello.marshal()) vers, ok := mutualVersion(serverHello.vers) if !ok { return c.sendAlert(alertProtocolVersion) } c.vers = vers c.haveVers = true if serverHello.compressionMethod != compressionNone { return c.sendAlert(alertUnexpectedMessage) } if !hello.nextProtoNeg && serverHello.nextProtoNeg { c.sendAlert(alertHandshakeFailure) return errors.New("server advertised unrequested NPN") } suite, suiteId := mutualCipherSuite(c.config.cipherSuites(), serverHello.cipherSuite) if suite == nil { return c.sendAlert(alertHandshakeFailure) } msg, err = c.readHandshake() if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(certMsg.marshal()) certs := make([]*x509.Certificate, len(certMsg.certificates)) for i, asn1Data := range certMsg.certificates { cert, err := x509.ParseCertificate(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("failed to parse certificate from server: " + err.Error()) } certs[i] = cert } if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.rootCAs(), CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for i, cert := range certs { if i == 0 { continue } opts.Intermediates.AddCert(cert) } c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return err } } if _, ok := certs[0].PublicKey.(*rsa.PublicKey); !ok { return c.sendAlert(alertUnsupportedCertificate) } c.peerCertificates = certs if serverHello.ocspStapling { msg, err = c.readHandshake() if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(cs.marshal()) if cs.statusType == statusTypeOCSP { c.ocspResponse = cs.response } } msg, err = c.readHandshake() if err != nil { return err } keyAgreement := suite.ka() skx, ok := msg.(*serverKeyExchangeMsg) if ok { finishedHash.Write(skx.marshal()) err = keyAgreement.processServerKeyExchange(c.config, hello, serverHello, certs[0], skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } msg, err = c.readHandshake() if err != nil { return err } } transmitCert := false certReq, ok := msg.(*certificateRequestMsg) if ok { // We only accept certificates with RSA keys. rsaAvail := false for _, certType := range certReq.certificateTypes { if certType == certTypeRSASign { rsaAvail = true break } } // For now, only send a certificate back if the server gives us an // empty list of certificateAuthorities. // // RFC 4346 on the certificateAuthorities field: // A list of the distinguished names of acceptable certificate // authorities. These distinguished names may specify a desired // distinguished name for a root CA or for a subordinate CA; thus, // this message can be used to describe both known roots and a // desired authorization space. If the certificate_authorities // list is empty then the client MAY send any certificate of the // appropriate ClientCertificateType, unless there is some // external arrangement to the contrary. if rsaAvail && len(certReq.certificateAuthorities) == 0 { transmitCert = true } finishedHash.Write(certReq.marshal()) msg, err = c.readHandshake() if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } finishedHash.Write(shd.marshal()) var cert *x509.Certificate if transmitCert { certMsg = new(certificateMsg) if len(c.config.Certificates) > 0 { cert, err = x509.ParseCertificate(c.config.Certificates[0].Certificate[0]) if err == nil && cert.PublicKeyAlgorithm == x509.RSA { certMsg.certificates = c.config.Certificates[0].Certificate } else { cert = nil } } finishedHash.Write(certMsg.marshal()) c.writeRecord(recordTypeHandshake, certMsg.marshal()) } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hello, certs[0]) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { finishedHash.Write(ckx.marshal()) c.writeRecord(recordTypeHandshake, ckx.marshal()) } if cert != nil { certVerify := new(certificateVerifyMsg) var digest [36]byte copy(digest[0:16], finishedHash.serverMD5.Sum()) copy(digest[16:36], finishedHash.serverSHA1.Sum()) signed, err := rsa.SignPKCS1v15(c.config.rand(), c.config.Certificates[0].PrivateKey, crypto.MD5SHA1, digest[0:]) if err != nil { return c.sendAlert(alertInternalError) } certVerify.signature = signed finishedHash.Write(certVerify.marshal()) c.writeRecord(recordTypeHandshake, certVerify.marshal()) } masterSecret, clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromPreMasterSecret(c.vers, preMasterSecret, hello.random, serverHello.random, suite.macLen, suite.keyLen, suite.ivLen) clientCipher := suite.cipher(clientKey, clientIV, false /* not for reading */ ) clientHash := suite.mac(c.vers, clientMAC) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) c.writeRecord(recordTypeChangeCipherSpec, []byte{1}) if serverHello.nextProtoNeg { nextProto := new(nextProtoMsg) proto, fallback := mutualProtocol(c.config.NextProtos, serverHello.nextProtos) nextProto.proto = proto c.clientProtocol = proto c.clientProtocolFallback = fallback finishedHash.Write(nextProto.marshal()) c.writeRecord(recordTypeHandshake, nextProto.marshal()) } finished := new(finishedMsg) finished.verifyData = finishedHash.clientSum(masterSecret) finishedHash.Write(finished.marshal()) c.writeRecord(recordTypeHandshake, finished.marshal()) serverCipher := suite.cipher(serverKey, serverIV, true /* for reading */ ) serverHash := suite.mac(c.vers, serverMAC) c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.readRecord(recordTypeChangeCipherSpec) if c.err != nil { return c.err } msg, err = c.readHandshake() if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { return c.sendAlert(alertUnexpectedMessage) } verify := finishedHash.serverSum(masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { return c.sendAlert(alertHandshakeFailure) } c.handshakeComplete = true c.cipherSuite = suiteId return nil } // mutualProtocol finds the mutual Next Protocol Negotiation protocol given the // set of client and server supported protocols. The set of client supported // protocols must not be empty. It returns the resulting protocol and flag // indicating if the fallback case was reached. func mutualProtocol(clientProtos, serverProtos []string) (string, bool) { for _, s := range serverProtos { for _, c := range clientProtos { if s == c { return s, false } } } return clientProtos[0], true }