// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls // The handshake goroutine reads handshake messages from the record processor // and outputs messages to be written on another channel. It updates the record // processor with the state of the connection via the control channel. In the // case of handshake messages that need synchronous processing (because they // affect the handling of the next record) the record processor knows about // them and either waits for a control message (Finished) or includes a reply // channel in the message (ChangeCipherSpec). import ( "crypto/hmac" "crypto/rc4" "crypto/rsa" "crypto/sha1" "crypto/subtle" "io" ) type cipherSuite struct { id uint16 // The number of this suite on the wire. hashLength, cipherKeyLength int // TODO(agl): need a method to create the cipher and hash interfaces. } var cipherSuites = []cipherSuite{ cipherSuite{TLS_RSA_WITH_RC4_128_SHA, 20, 16}, } // A serverHandshake performs the server side of the TLS 1.1 handshake protocol. type serverHandshake struct { writeChan chan<- interface{} controlChan chan<- interface{} msgChan <-chan interface{} config *Config } func (h *serverHandshake) loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config) { h.writeChan = writeChan h.controlChan = controlChan h.msgChan = msgChan h.config = config defer close(writeChan) defer close(controlChan) clientHello, ok := h.readHandshakeMsg().(*clientHelloMsg) if !ok { h.error(alertUnexpectedMessage) return } major, minor, ok := mutualVersion(clientHello.major, clientHello.minor) if !ok { h.error(alertProtocolVersion) return } finishedHash := newFinishedHash() finishedHash.Write(clientHello.marshal()) hello := new(serverHelloMsg) // We only support a single ciphersuite so we look for it in the list // of client supported suites. // // TODO(agl): Add additional cipher suites. var suite *cipherSuite for _, id := range clientHello.cipherSuites { for _, supported := range cipherSuites { if supported.id == id { suite = &supported break } } } foundCompression := false // We only support null compression, so check that the client offered it. for _, compression := range clientHello.compressionMethods { if compression == compressionNone { foundCompression = true break } } if suite == nil || !foundCompression { h.error(alertHandshakeFailure) return } hello.major = major hello.minor = minor hello.cipherSuite = suite.id currentTime := uint32(config.Time()) hello.random = make([]byte, 32) hello.random[0] = byte(currentTime >> 24) hello.random[1] = byte(currentTime >> 16) hello.random[2] = byte(currentTime >> 8) hello.random[3] = byte(currentTime) _, err := io.ReadFull(config.Rand, hello.random[4:]) if err != nil { h.error(alertInternalError) return } hello.compressionMethod = compressionNone finishedHash.Write(hello.marshal()) writeChan <- writerSetVersion{major, minor} writeChan <- hello if len(config.Certificates) == 0 { h.error(alertInternalError) return } certMsg := new(certificateMsg) certMsg.certificates = config.Certificates[0].Certificate finishedHash.Write(certMsg.marshal()) writeChan <- certMsg helloDone := new(serverHelloDoneMsg) finishedHash.Write(helloDone.marshal()) writeChan <- helloDone ckx, ok := h.readHandshakeMsg().(*clientKeyExchangeMsg) if !ok { h.error(alertUnexpectedMessage) return } finishedHash.Write(ckx.marshal()) preMasterSecret := make([]byte, 48) _, err = io.ReadFull(config.Rand, preMasterSecret[2:]) if err != nil { h.error(alertInternalError) return } err = rsa.DecryptPKCS1v15SessionKey(config.Rand, config.Certificates[0].PrivateKey, ckx.ciphertext, preMasterSecret) if err != nil { h.error(alertHandshakeFailure) return } // We don't check the version number in the premaster secret. For one, // by checking it, we would leak information about the validity of the // encrypted pre-master secret. Secondly, it provides only a small // benefit against a downgrade attack and some implementations send the // wrong version anyway. See the discussion at the end of section // 7.4.7.1 of RFC 4346. masterSecret, clientMAC, serverMAC, clientKey, serverKey := keysFromPreMasterSecret11(preMasterSecret, clientHello.random, hello.random, suite.hashLength, suite.cipherKeyLength) _, ok = h.readHandshakeMsg().(changeCipherSpec) if !ok { h.error(alertUnexpectedMessage) return } cipher, _ := rc4.NewCipher(clientKey) controlChan <- &newCipherSpec{cipher, hmac.New(sha1.New(), clientMAC)} clientFinished, ok := h.readHandshakeMsg().(*finishedMsg) if !ok { h.error(alertUnexpectedMessage) return } verify := finishedHash.clientSum(masterSecret) if len(verify) != len(clientFinished.verifyData) || subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 { h.error(alertHandshakeFailure) return } controlChan <- ConnectionState{true, "TLS_RSA_WITH_RC4_128_SHA", 0} finishedHash.Write(clientFinished.marshal()) cipher2, _ := rc4.NewCipher(serverKey) writeChan <- writerChangeCipherSpec{cipher2, hmac.New(sha1.New(), serverMAC)} finished := new(finishedMsg) finished.verifyData = finishedHash.serverSum(masterSecret) writeChan <- finished writeChan <- writerEnableApplicationData{} for { _, ok := h.readHandshakeMsg().(*clientHelloMsg) if !ok { h.error(alertUnexpectedMessage) return } // We reject all renegotication requests. writeChan <- alert{alertLevelWarning, alertNoRenegotiation} } } func (h *serverHandshake) readHandshakeMsg() interface{} { v := <-h.msgChan if closed(h.msgChan) { // If the channel closed then the processor received an error // from the peer and we don't want to echo it back to them. h.msgChan = nil return 0 } if _, ok := v.(alert); ok { // We got an alert from the processor. We forward to the writer // and shutdown. h.writeChan <- v h.msgChan = nil return 0 } return v } func (h *serverHandshake) error(e alertType) { if h.msgChan != nil { // If we didn't get an error from the processor, then we need // to tell it about the error. go func() { for _ = range h.msgChan { } }() h.controlChan <- ConnectionState{false, "", e} close(h.controlChan) h.writeChan <- alert{alertLevelError, e} } }