// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "container/list" "crypto" "crypto/internal/cipherhw" "crypto/rand" "crypto/sha512" "crypto/x509" "errors" "fmt" "io" "math/big" "net" "strings" "sync" "time" ) const ( VersionSSL30 = 0x0300 VersionTLS10 = 0x0301 VersionTLS11 = 0x0302 VersionTLS12 = 0x0303 VersionTLS13 = 0x0304 ) const ( maxPlaintext = 16384 // maximum plaintext payload length maxCiphertext = 16384 + 2048 // maximum ciphertext payload length recordHeaderLen = 5 // record header length maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB) maxWarnAlertCount = 5 // maximum number of consecutive warning alerts minVersion = VersionTLS12 maxVersion = VersionTLS13 ) // TLS record types. type recordType uint8 const ( recordTypeChangeCipherSpec recordType = 20 recordTypeAlert recordType = 21 recordTypeHandshake recordType = 22 recordTypeApplicationData recordType = 23 ) // TLS handshake message types. const ( typeHelloRequest uint8 = 0 typeClientHello uint8 = 1 typeServerHello uint8 = 2 typeNewSessionTicket uint8 = 4 typeEndOfEarlyData uint8 = 5 typeEncryptedExtensions uint8 = 8 typeCertificate uint8 = 11 typeServerKeyExchange uint8 = 12 typeCertificateRequest uint8 = 13 typeServerHelloDone uint8 = 14 typeCertificateVerify uint8 = 15 typeClientKeyExchange uint8 = 16 typeFinished uint8 = 20 typeCertificateStatus uint8 = 22 typeNextProtocol uint8 = 67 // Not IANA assigned ) // TLS compression types. const ( compressionNone uint8 = 0 ) // TLS extension numbers const ( extensionServerName uint16 = 0 extensionStatusRequest uint16 = 5 extensionSupportedCurves uint16 = 10 // Supported Groups in 1.3 nomenclature extensionSupportedPoints uint16 = 11 extensionSignatureAlgorithms uint16 = 13 extensionALPN uint16 = 16 extensionSCT uint16 = 18 // https://tools.ietf.org/html/rfc6962#section-6 extensionEMS uint16 = 23 extensionSessionTicket uint16 = 35 extensionPreSharedKey uint16 = 41 extensionEarlyData uint16 = 42 extensionSupportedVersions uint16 = 43 extensionPSKKeyExchangeModes uint16 = 45 extensionCAs uint16 = 47 extensionSignatureAlgorithmsCert uint16 = 50 extensionKeyShare uint16 = 51 extensionNextProtoNeg uint16 = 13172 // not IANA assigned extensionRenegotiationInfo uint16 = 0xff01 extensionDelegatedCredential uint16 = 0xff02 // TODO(any) Get IANA assignment ) // TLS signaling cipher suite values const ( scsvRenegotiation uint16 = 0x00ff ) // PSK Key Exchange Modes // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7 const ( pskDHEKeyExchange uint8 = 1 ) // CurveID is the type of a TLS identifier for an elliptic curve. See // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8 // // TLS 1.3 refers to these as Groups, but this library implements only // curve-based ones anyway. See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.4. type CurveID uint16 const ( // Exported IDs CurveP256 CurveID = 23 CurveP384 CurveID = 24 CurveP521 CurveID = 25 X25519 CurveID = 29 // Experimental KEX HybridSidhP503Curve25519 CurveID = 0x0105 + (sidhP503 & 0xFF) // HybridSIDH: X25519 + P503 HybridSidhP751Curve448 CurveID = 0x0105 + (sidhP751 & 0xFF) // HybridSIDH: X448 + P751 // Internal usage. Deliberately not exported sidhP503 CurveID = 0xFE00 sidhP751 CurveID = 0xFE01 ) // TLS 1.3 Key Share // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.5 type keyShare struct { group CurveID data []byte } // TLS 1.3 PSK Identity and Binder, as sent by the client // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6 type psk struct { identity []byte obfTicketAge uint32 binder []byte } // TLS Elliptic Curve Point Formats // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9 const ( pointFormatUncompressed uint8 = 0 ) // TLS CertificateStatusType (RFC 3546) const ( statusTypeOCSP uint8 = 1 ) // Certificate types (for certificateRequestMsg) const ( certTypeRSASign = 1 // A certificate containing an RSA key certTypeDSSSign = 2 // A certificate containing a DSA key certTypeRSAFixedDH = 3 // A certificate containing a static DH key certTypeDSSFixedDH = 4 // A certificate containing a static DH key // See RFC 4492 sections 3 and 5.5. certTypeECDSASign = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA. certTypeRSAFixedECDH = 65 // A certificate containing an ECDH-capable public key, signed with RSA. certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA. // Rest of these are reserved by the TLS spec ) // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1) const ( signaturePKCS1v15 uint8 = iota + 1 signatureECDSA signatureRSAPSS ) // supportedSignatureAlgorithms contains the signature and hash algorithms that // the code advertises as supported in a TLS 1.2 ClientHello and in a TLS 1.2 // CertificateRequest. The two fields are merged to match with TLS 1.3. // Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc. var supportedSignatureAlgorithms = []SignatureScheme{ PKCS1WithSHA256, ECDSAWithP256AndSHA256, PKCS1WithSHA384, ECDSAWithP384AndSHA384, PKCS1WithSHA512, ECDSAWithP521AndSHA512, PKCS1WithSHA1, ECDSAWithSHA1, } // supportedSignatureAlgorithms13 lists the advertised signature algorithms // allowed for digital signatures. It includes TLS 1.2 + PSS. var supportedSignatureAlgorithms13 = []SignatureScheme{ PSSWithSHA256, PKCS1WithSHA256, ECDSAWithP256AndSHA256, PSSWithSHA384, PKCS1WithSHA384, ECDSAWithP384AndSHA384, PSSWithSHA512, PKCS1WithSHA512, ECDSAWithP521AndSHA512, PKCS1WithSHA1, ECDSAWithSHA1, } // ConnectionState records basic TLS details about the connection. type ConnectionState struct { ConnectionID []byte // Random unique connection id Version uint16 // TLS version used by the connection (e.g. VersionTLS12) HandshakeComplete bool // TLS handshake is complete DidResume bool // connection resumes a previous TLS connection CipherSuite uint16 // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...) NegotiatedProtocol string // negotiated next protocol (not guaranteed to be from Config.NextProtos) NegotiatedProtocolIsMutual bool // negotiated protocol was advertised by server (client side only) ServerName string // server name requested by client, if any (server side only) PeerCertificates []*x509.Certificate // certificate chain presented by remote peer VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates SignedCertificateTimestamps [][]byte // SCTs from the server, if any OCSPResponse []byte // stapled OCSP response from server, if any DelegatedCredential []byte // Delegated credential sent by the server, if any // TLSUnique contains the "tls-unique" channel binding value (see RFC // 5929, section 3). For resumed sessions this value will be nil // because resumption does not include enough context (see // https://mitls.org/pages/attacks/3SHAKE#channelbindings). This will // change in future versions of Go once the TLS master-secret fix has // been standardized and implemented. TLSUnique []byte // HandshakeConfirmed is true once all data returned by Read // (past and future) is guaranteed not to be replayed. HandshakeConfirmed bool // Unique0RTTToken is a value that never repeats, and can be used // to detect replay attacks against 0-RTT connections. // Unique0RTTToken is only present if HandshakeConfirmed is false. Unique0RTTToken []byte ClientHello []byte // ClientHello packet } // ClientAuthType declares the policy the server will follow for // TLS Client Authentication. type ClientAuthType int const ( NoClientCert ClientAuthType = iota RequestClientCert RequireAnyClientCert VerifyClientCertIfGiven RequireAndVerifyClientCert ) // ClientSessionState contains the state needed by clients to resume TLS // sessions. type ClientSessionState struct { sessionTicket []uint8 // Encrypted ticket used for session resumption with server vers uint16 // SSL/TLS version negotiated for the session cipherSuite uint16 // Ciphersuite negotiated for the session masterSecret []byte // MasterSecret generated by client on a full handshake serverCertificates []*x509.Certificate // Certificate chain presented by the server verifiedChains [][]*x509.Certificate // Certificate chains we built for verification useEMS bool // State of extended master secret } // ClientSessionCache is a cache of ClientSessionState objects that can be used // by a client to resume a TLS session with a given server. ClientSessionCache // implementations should expect to be called concurrently from different // goroutines. Only ticket-based resumption is supported, not SessionID-based // resumption. type ClientSessionCache interface { // Get searches for a ClientSessionState associated with the given key. // On return, ok is true if one was found. Get(sessionKey string) (session *ClientSessionState, ok bool) // Put adds the ClientSessionState to the cache with the given key. Put(sessionKey string, cs *ClientSessionState) } // SignatureScheme identifies a signature algorithm supported by TLS. See // https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.3. type SignatureScheme uint16 const ( PKCS1WithSHA1 SignatureScheme = 0x0201 PKCS1WithSHA256 SignatureScheme = 0x0401 PKCS1WithSHA384 SignatureScheme = 0x0501 PKCS1WithSHA512 SignatureScheme = 0x0601 PSSWithSHA256 SignatureScheme = 0x0804 PSSWithSHA384 SignatureScheme = 0x0805 PSSWithSHA512 SignatureScheme = 0x0806 ECDSAWithP256AndSHA256 SignatureScheme = 0x0403 ECDSAWithP384AndSHA384 SignatureScheme = 0x0503 ECDSAWithP521AndSHA512 SignatureScheme = 0x0603 // Legacy signature and hash algorithms for TLS 1.2. ECDSAWithSHA1 SignatureScheme = 0x0203 ) // ClientHelloInfo contains information from a ClientHello message in order to // guide certificate selection in the GetCertificate callback. type ClientHelloInfo struct { // CipherSuites lists the CipherSuites supported by the client (e.g. // TLS_RSA_WITH_RC4_128_SHA). CipherSuites []uint16 // ServerName indicates the name of the server requested by the client // in order to support virtual hosting. ServerName is only set if the // client is using SNI (see // http://tools.ietf.org/html/rfc4366#section-3.1). ServerName string // SupportedCurves lists the elliptic curves supported by the client. // SupportedCurves is set only if the Supported Elliptic Curves // Extension is being used (see // http://tools.ietf.org/html/rfc4492#section-5.1.1). SupportedCurves []CurveID // SupportedPoints lists the point formats supported by the client. // SupportedPoints is set only if the Supported Point Formats Extension // is being used (see // http://tools.ietf.org/html/rfc4492#section-5.1.2). SupportedPoints []uint8 // SignatureSchemes lists the signature and hash schemes that the client // is willing to verify. SignatureSchemes is set only if the Signature // Algorithms Extension is being used (see // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1). SignatureSchemes []SignatureScheme // SupportedProtos lists the application protocols supported by the client. // SupportedProtos is set only if the Application-Layer Protocol // Negotiation Extension is being used (see // https://tools.ietf.org/html/rfc7301#section-3.1). // // Servers can select a protocol by setting Config.NextProtos in a // GetConfigForClient return value. SupportedProtos []string // SupportedVersions lists the TLS versions supported by the client. // For TLS versions less than 1.3, this is extrapolated from the max // version advertised by the client, so values other than the greatest // might be rejected if used. SupportedVersions []uint16 // Conn is the underlying net.Conn for the connection. Do not read // from, or write to, this connection; that will cause the TLS // connection to fail. Conn net.Conn // Offered0RTTData is true if the client announced that it will send // 0-RTT data. If the server Config.Accept0RTTData is true, and the // client offered a session ticket valid for that purpose, it will // be notified that the 0-RTT data is accepted and it will be made // immediately available for Read. Offered0RTTData bool // AcceptsDelegatedCredential is true if the client indicated willingness // to negotiate the delegated credential extension. AcceptsDelegatedCredential bool // The Fingerprint is an sequence of bytes unique to this Client Hello. // It can be used to prevent or mitigate 0-RTT data replays as it's // guaranteed that a replayed connection will have the same Fingerprint. Fingerprint []byte } // CertificateRequestInfo contains information from a server's // CertificateRequest message, which is used to demand a certificate and proof // of control from a client. type CertificateRequestInfo struct { // AcceptableCAs contains zero or more, DER-encoded, X.501 // Distinguished Names. These are the names of root or intermediate CAs // that the server wishes the returned certificate to be signed by. An // empty slice indicates that the server has no preference. AcceptableCAs [][]byte // SignatureSchemes lists the signature schemes that the server is // willing to verify. SignatureSchemes []SignatureScheme } // RenegotiationSupport enumerates the different levels of support for TLS // renegotiation. TLS renegotiation is the act of performing subsequent // handshakes on a connection after the first. This significantly complicates // the state machine and has been the source of numerous, subtle security // issues. Initiating a renegotiation is not supported, but support for // accepting renegotiation requests may be enabled. // // Even when enabled, the server may not change its identity between handshakes // (i.e. the leaf certificate must be the same). Additionally, concurrent // handshake and application data flow is not permitted so renegotiation can // only be used with protocols that synchronise with the renegotiation, such as // HTTPS. type RenegotiationSupport int const ( // RenegotiateNever disables renegotiation. RenegotiateNever RenegotiationSupport = iota // RenegotiateOnceAsClient allows a remote server to request // renegotiation once per connection. RenegotiateOnceAsClient // RenegotiateFreelyAsClient allows a remote server to repeatedly // request renegotiation. RenegotiateFreelyAsClient ) // A Config structure is used to configure a TLS client or server. // After one has been passed to a TLS function it must not be // modified. A Config may be reused; the tls package will also not // modify it. type Config struct { // Rand provides the source of entropy for nonces and RSA blinding. // If Rand is nil, TLS uses the cryptographic random reader in package // crypto/rand. // The Reader must be safe for use by multiple goroutines. Rand io.Reader // Time returns the current time as the number of seconds since the epoch. // If Time is nil, TLS uses time.Now. Time func() time.Time // Certificates contains one or more certificate chains to present to // the other side of the connection. Server configurations must include // at least one certificate or else set GetCertificate. Clients doing // client-authentication may set either Certificates or // GetClientCertificate. Certificates []Certificate // NameToCertificate maps from a certificate name to an element of // Certificates. Note that a certificate name can be of the form // '*.example.com' and so doesn't have to be a domain name as such. // See Config.BuildNameToCertificate // The nil value causes the first element of Certificates to be used // for all connections. NameToCertificate map[string]*Certificate // GetCertificate returns a Certificate based on the given // ClientHelloInfo. It will only be called if the client supplies SNI // information or if Certificates is empty. // // If GetCertificate is nil or returns nil, then the certificate is // retrieved from NameToCertificate. If NameToCertificate is nil, the // first element of Certificates will be used. GetCertificate func(*ClientHelloInfo) (*Certificate, error) // GetClientCertificate, if not nil, is called when a server requests a // certificate from a client. If set, the contents of Certificates will // be ignored. // // If GetClientCertificate returns an error, the handshake will be // aborted and that error will be returned. Otherwise // GetClientCertificate must return a non-nil Certificate. If // Certificate.Certificate is empty then no certificate will be sent to // the server. If this is unacceptable to the server then it may abort // the handshake. // // GetClientCertificate may be called multiple times for the same // connection if renegotiation occurs or if TLS 1.3 is in use. GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error) // GetConfigForClient, if not nil, is called after a ClientHello is // received from a client. It may return a non-nil Config in order to // change the Config that will be used to handle this connection. If // the returned Config is nil, the original Config will be used. The // Config returned by this callback may not be subsequently modified. // // If GetConfigForClient is nil, the Config passed to Server() will be // used for all connections. // // Uniquely for the fields in the returned Config, session ticket keys // will be duplicated from the original Config if not set. // Specifically, if SetSessionTicketKeys was called on the original // config but not on the returned config then the ticket keys from the // original config will be copied into the new config before use. // Otherwise, if SessionTicketKey was set in the original config but // not in the returned config then it will be copied into the returned // config before use. If neither of those cases applies then the key // material from the returned config will be used for session tickets. GetConfigForClient func(*ClientHelloInfo) (*Config, error) // VerifyPeerCertificate, if not nil, is called after normal // certificate verification by either a TLS client or server. It // receives the raw ASN.1 certificates provided by the peer and also // any verified chains that normal processing found. If it returns a // non-nil error, the handshake is aborted and that error results. // // If normal verification fails then the handshake will abort before // considering this callback. If normal verification is disabled by // setting InsecureSkipVerify, or (for a server) when ClientAuth is // RequestClientCert or RequireAnyClientCert, then this callback will // be considered but the verifiedChains argument will always be nil. VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error // RootCAs defines the set of root certificate authorities // that clients use when verifying server certificates. // If RootCAs is nil, TLS uses the host's root CA set. RootCAs *x509.CertPool // NextProtos is a list of supported, application level protocols. NextProtos []string // ServerName is used to verify the hostname on the returned // certificates unless InsecureSkipVerify is given. It is also included // in the client's handshake to support virtual hosting unless it is // an IP address. ServerName string // ClientAuth determines the server's policy for // TLS Client Authentication. The default is NoClientCert. ClientAuth ClientAuthType // ClientCAs defines the set of root certificate authorities // that servers use if required to verify a client certificate // by the policy in ClientAuth. ClientCAs *x509.CertPool // InsecureSkipVerify controls whether a client verifies the // server's certificate chain and host name. // If InsecureSkipVerify is true, TLS accepts any certificate // presented by the server and any host name in that certificate. // In this mode, TLS is susceptible to man-in-the-middle attacks. // This should be used only for testing. InsecureSkipVerify bool // CipherSuites is a list of supported cipher suites to be used in // TLS 1.0-1.2. If CipherSuites is nil, TLS uses a list of suites // supported by the implementation. CipherSuites []uint16 // PreferServerCipherSuites controls whether the server selects the // client's most preferred ciphersuite, or the server's most preferred // ciphersuite. If true then the server's preference, as expressed in // the order of elements in CipherSuites, is used. PreferServerCipherSuites bool // SessionTicketsDisabled may be set to true to disable session ticket // (resumption) support. SessionTicketsDisabled bool // SessionTicketKey is used by TLS servers to provide session // resumption. See RFC 5077. If zero, it will be filled with // random data before the first server handshake. // // If multiple servers are terminating connections for the same host // they should all have the same SessionTicketKey. If the // SessionTicketKey leaks, previously recorded and future TLS // connections using that key are compromised. SessionTicketKey [32]byte // ClientSessionCache is a cache of ClientSessionState entries for TLS // session resumption. ClientSessionCache ClientSessionCache // MinVersion contains the minimum SSL/TLS version that is acceptable. // If zero, then TLS 1.0 is taken as the minimum. MinVersion uint16 // MaxVersion contains the maximum SSL/TLS version that is acceptable. // If zero, then the maximum version supported by this package is used, // which is currently TLS 1.2. MaxVersion uint16 // CurvePreferences contains the elliptic curves that will be used in // an ECDHE handshake, in preference order. If empty, the default will // be used. CurvePreferences []CurveID // DynamicRecordSizingDisabled disables adaptive sizing of TLS records. // When true, the largest possible TLS record size is always used. When // false, the size of TLS records may be adjusted in an attempt to // improve latency. DynamicRecordSizingDisabled bool // Renegotiation controls what types of renegotiation are supported. // The default, none, is correct for the vast majority of applications. Renegotiation RenegotiationSupport // KeyLogWriter optionally specifies a destination for TLS master secrets // in NSS key log format that can be used to allow external programs // such as Wireshark to decrypt TLS connections. // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format. // Use of KeyLogWriter compromises security and should only be // used for debugging. KeyLogWriter io.Writer // If Max0RTTDataSize is not zero, the client will be allowed to use // session tickets to send at most this number of bytes of 0-RTT data. // 0-RTT data is subject to replay and has memory DoS implications. // The server will later be able to refuse the 0-RTT data with // Accept0RTTData, or wait for the client to prove that it's not // replayed with Conn.ConfirmHandshake. // // It has no meaning on the client. // // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3. Max0RTTDataSize uint32 // Accept0RTTData makes the 0-RTT data received from the client // immediately available to Read. 0-RTT data is subject to replay. // Use Conn.ConfirmHandshake to wait until the data is known not // to be replayed after reading it. // // It has no meaning on the client. // // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-2.3. Accept0RTTData bool // SessionTicketSealer, if not nil, is used to wrap and unwrap // session tickets, instead of SessionTicketKey. SessionTicketSealer SessionTicketSealer // AcceptDelegatedCredential is true if the client is willing to negotiate // the delegated credential extension. // // This value has no meaning for the server. // // See https://tools.ietf.org/html/draft-ietf-tls-subcerts-02. AcceptDelegatedCredential bool // GetDelegatedCredential returns a DC and its private key for use in the // delegated credential extension. The inputs to the callback are some // information parsed from the ClientHello, as well as the protocol version // selected by the server. This is necessary because the DC is bound to the // protocol version in which it's used. The return value is the raw DC // encoded in the wire format specified in // https://tools.ietf.org/html/draft-ietf-tls-subcerts-02. If the return // value is nil, then the server will not offer negotiate the extension. // // This value has no meaning for the client. GetDelegatedCredential func(*ClientHelloInfo, uint16) ([]byte, crypto.PrivateKey, error) serverInitOnce sync.Once // guards calling (*Config).serverInit // mutex protects sessionTicketKeys. mutex sync.RWMutex // sessionTicketKeys contains zero or more ticket keys. If the length // is zero, SessionTicketsDisabled must be true. The first key is used // for new tickets and any subsequent keys can be used to decrypt old // tickets. sessionTicketKeys []ticketKey // UseExtendedMasterSecret indicates whether or not the connection // should use the extended master secret computation if available UseExtendedMasterSecret bool } // ticketKeyNameLen is the number of bytes of identifier that is prepended to // an encrypted session ticket in order to identify the key used to encrypt it. const ticketKeyNameLen = 16 // ticketKey is the internal representation of a session ticket key. type ticketKey struct { // keyName is an opaque byte string that serves to identify the session // ticket key. It's exposed as plaintext in every session ticket. keyName [ticketKeyNameLen]byte aesKey [16]byte hmacKey [16]byte } // ticketKeyFromBytes converts from the external representation of a session // ticket key to a ticketKey. Externally, session ticket keys are 32 random // bytes and this function expands that into sufficient name and key material. func ticketKeyFromBytes(b [32]byte) (key ticketKey) { hashed := sha512.Sum512(b[:]) copy(key.keyName[:], hashed[:ticketKeyNameLen]) copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16]) copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32]) return key } // Clone returns a shallow clone of c. It is safe to clone a Config that is // being used concurrently by a TLS client or server. func (c *Config) Clone() *Config { // Running serverInit ensures that it's safe to read // SessionTicketsDisabled. c.serverInitOnce.Do(func() { c.serverInit(nil) }) var sessionTicketKeys []ticketKey c.mutex.RLock() sessionTicketKeys = c.sessionTicketKeys c.mutex.RUnlock() return &Config{ Rand: c.Rand, Time: c.Time, Certificates: c.Certificates, NameToCertificate: c.NameToCertificate, GetCertificate: c.GetCertificate, GetClientCertificate: c.GetClientCertificate, GetConfigForClient: c.GetConfigForClient, VerifyPeerCertificate: c.VerifyPeerCertificate, RootCAs: c.RootCAs, NextProtos: c.NextProtos, ServerName: c.ServerName, ClientAuth: c.ClientAuth, ClientCAs: c.ClientCAs, InsecureSkipVerify: c.InsecureSkipVerify, CipherSuites: c.CipherSuites, PreferServerCipherSuites: c.PreferServerCipherSuites, SessionTicketsDisabled: c.SessionTicketsDisabled, SessionTicketKey: c.SessionTicketKey, ClientSessionCache: c.ClientSessionCache, MinVersion: c.MinVersion, MaxVersion: c.MaxVersion, CurvePreferences: c.CurvePreferences, DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled, Renegotiation: c.Renegotiation, KeyLogWriter: c.KeyLogWriter, Accept0RTTData: c.Accept0RTTData, Max0RTTDataSize: c.Max0RTTDataSize, SessionTicketSealer: c.SessionTicketSealer, AcceptDelegatedCredential: c.AcceptDelegatedCredential, GetDelegatedCredential: c.GetDelegatedCredential, sessionTicketKeys: sessionTicketKeys, UseExtendedMasterSecret: c.UseExtendedMasterSecret, } } // serverInit is run under c.serverInitOnce to do initialization of c. If c was // returned by a GetConfigForClient callback then the argument should be the // Config that was passed to Server, otherwise it should be nil. func (c *Config) serverInit(originalConfig *Config) { if c.SessionTicketsDisabled || len(c.ticketKeys()) != 0 || c.SessionTicketSealer != nil { return } alreadySet := false for _, b := range c.SessionTicketKey { if b != 0 { alreadySet = true break } } if !alreadySet { if originalConfig != nil { copy(c.SessionTicketKey[:], originalConfig.SessionTicketKey[:]) } else if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil { c.SessionTicketsDisabled = true return } } if originalConfig != nil { originalConfig.mutex.RLock() c.sessionTicketKeys = originalConfig.sessionTicketKeys originalConfig.mutex.RUnlock() } else { c.sessionTicketKeys = []ticketKey{ticketKeyFromBytes(c.SessionTicketKey)} } } func (c *Config) ticketKeys() []ticketKey { c.mutex.RLock() // c.sessionTicketKeys is constant once created. SetSessionTicketKeys // will only update it by replacing it with a new value. ret := c.sessionTicketKeys c.mutex.RUnlock() return ret } // SetSessionTicketKeys updates the session ticket keys for a server. The first // key will be used when creating new tickets, while all keys can be used for // decrypting tickets. It is safe to call this function while the server is // running in order to rotate the session ticket keys. The function will panic // if keys is empty. func (c *Config) SetSessionTicketKeys(keys [][32]byte) { if len(keys) == 0 { panic("tls: keys must have at least one key") } newKeys := make([]ticketKey, len(keys)) for i, bytes := range keys { newKeys[i] = ticketKeyFromBytes(bytes) } c.mutex.Lock() c.sessionTicketKeys = newKeys c.mutex.Unlock() } func (c *Config) rand() io.Reader { r := c.Rand if r == nil { return rand.Reader } return r } func (c *Config) time() time.Time { t := c.Time if t == nil { t = time.Now } return t() } func hasOverlappingCipherSuites(cs1, cs2 []uint16) bool { for _, c1 := range cs1 { for _, c2 := range cs2 { if c1 == c2 { return true } } } return false } func (c *Config) cipherSuites() []uint16 { s := c.CipherSuites if s == nil { s = defaultCipherSuites() } else if c.maxVersion() >= VersionTLS13 { // Ensure that TLS 1.3 suites are always present, but respect // the application cipher suite preferences. s13 := defaultTLS13CipherSuites() if !hasOverlappingCipherSuites(s, s13) { allSuites := make([]uint16, len(s13)+len(s)) allSuites = append(allSuites, s13...) s = append(allSuites, s...) } } return s } func (c *Config) minVersion() uint16 { if c == nil || c.MinVersion == 0 { return minVersion } return c.MinVersion } func (c *Config) maxVersion() uint16 { if c == nil || c.MaxVersion == 0 { return maxVersion } return c.MaxVersion } var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521} func (c *Config) curvePreferences() []CurveID { if c == nil || len(c.CurvePreferences) == 0 { return defaultCurvePreferences } return c.CurvePreferences } // mutualVersion returns the protocol version to use given the advertised // version of the peer using the legacy non-extension methods. func (c *Config) mutualVersion(vers uint16) (uint16, bool) { minVersion := c.minVersion() maxVersion := c.maxVersion() // Version 1.3 and higher are not negotiated via this mechanism. if maxVersion > VersionTLS12 { maxVersion = VersionTLS12 } if vers < minVersion { return 0, false } if vers > maxVersion { vers = maxVersion } return vers, true } // pickVersion returns the protocol version to use given the advertised // versions of the peer using the Supported Versions extension. func (c *Config) pickVersion(peerSupportedVersions []uint16) (uint16, bool) { supportedVersions := c.getSupportedVersions() for _, supportedVersion := range supportedVersions { for _, version := range peerSupportedVersions { if version == supportedVersion { return version, true } } } return 0, false } // configSuppVersArray is the backing array of Config.getSupportedVersions var configSuppVersArray = [...]uint16{VersionTLS13, VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30} // getSupportedVersions returns the protocol versions that are supported by the // current configuration. func (c *Config) getSupportedVersions() []uint16 { minVersion := c.minVersion() maxVersion := c.maxVersion() // Sanity check to avoid advertising unsupported versions. if minVersion < VersionSSL30 { minVersion = VersionSSL30 } if maxVersion > VersionTLS13 { maxVersion = VersionTLS13 } if maxVersion < minVersion { return nil } return configSuppVersArray[VersionTLS13-maxVersion : VersionTLS13-minVersion+1] } // getCertificate returns the best certificate for the given ClientHelloInfo, // defaulting to the first element of c.Certificates. func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) { if c.GetCertificate != nil && (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) { cert, err := c.GetCertificate(clientHello) if cert != nil || err != nil { return cert, err } } if len(c.Certificates) == 0 { return nil, errors.New("tls: no certificates configured") } if len(c.Certificates) == 1 || c.NameToCertificate == nil { // There's only one choice, so no point doing any work. return &c.Certificates[0], nil } name := strings.ToLower(clientHello.ServerName) for len(name) > 0 && name[len(name)-1] == '.' { name = name[:len(name)-1] } if cert, ok := c.NameToCertificate[name]; ok { return cert, nil } // try replacing labels in the name with wildcards until we get a // match. labels := strings.Split(name, ".") for i := range labels { labels[i] = "*" candidate := strings.Join(labels, ".") if cert, ok := c.NameToCertificate[candidate]; ok { return cert, nil } } // If nothing matches, return the first certificate. return &c.Certificates[0], nil } // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate // from the CommonName and SubjectAlternateName fields of each of the leaf // certificates. func (c *Config) BuildNameToCertificate() { c.NameToCertificate = make(map[string]*Certificate) for i := range c.Certificates { cert := &c.Certificates[i] x509Cert, err := x509.ParseCertificate(cert.Certificate[0]) if err != nil { continue } if len(x509Cert.Subject.CommonName) > 0 { c.NameToCertificate[x509Cert.Subject.CommonName] = cert } for _, san := range x509Cert.DNSNames { c.NameToCertificate[san] = cert } } } // writeKeyLog logs client random and master secret if logging was enabled by // setting c.KeyLogWriter. func (c *Config) writeKeyLog(what string, clientRandom, masterSecret []byte) error { if c.KeyLogWriter == nil { return nil } logLine := []byte(fmt.Sprintf("%s %x %x\n", what, clientRandom, masterSecret)) writerMutex.Lock() _, err := c.KeyLogWriter.Write(logLine) writerMutex.Unlock() return err } // writerMutex protects all KeyLogWriters globally. It is rarely enabled, // and is only for debugging, so a global mutex saves space. var writerMutex sync.Mutex // A Certificate is a chain of one or more certificates, leaf first. type Certificate struct { Certificate [][]byte // PrivateKey contains the private key corresponding to the public key // in Leaf. For a server, this must implement crypto.Signer and/or // crypto.Decrypter, with an RSA or ECDSA PublicKey. For a client // (performing client authentication), this must be a crypto.Signer // with an RSA or ECDSA PublicKey. PrivateKey crypto.PrivateKey // OCSPStaple contains an optional OCSP response which will be served // to clients that request it. OCSPStaple []byte // SignedCertificateTimestamps contains an optional list of Signed // Certificate Timestamps which will be served to clients that request it. SignedCertificateTimestamps [][]byte // Leaf is the parsed form of the leaf certificate, which may be // initialized using x509.ParseCertificate to reduce per-handshake // processing for TLS clients doing client authentication. If nil, the // leaf certificate will be parsed as needed. Leaf *x509.Certificate } type handshakeMessage interface { marshal() []byte unmarshal([]byte) alert } // lruSessionCache is a ClientSessionCache implementation that uses an LRU // caching strategy. type lruSessionCache struct { sync.Mutex m map[string]*list.Element q *list.List capacity int } type lruSessionCacheEntry struct { sessionKey string state *ClientSessionState } // NewLRUClientSessionCache returns a ClientSessionCache with the given // capacity that uses an LRU strategy. If capacity is < 1, a default capacity // is used instead. func NewLRUClientSessionCache(capacity int) ClientSessionCache { const defaultSessionCacheCapacity = 64 if capacity < 1 { capacity = defaultSessionCacheCapacity } return &lruSessionCache{ m: make(map[string]*list.Element), q: list.New(), capacity: capacity, } } // Put adds the provided (sessionKey, cs) pair to the cache. func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) { c.Lock() defer c.Unlock() if elem, ok := c.m[sessionKey]; ok { entry := elem.Value.(*lruSessionCacheEntry) entry.state = cs c.q.MoveToFront(elem) return } if c.q.Len() < c.capacity { entry := &lruSessionCacheEntry{sessionKey, cs} c.m[sessionKey] = c.q.PushFront(entry) return } elem := c.q.Back() entry := elem.Value.(*lruSessionCacheEntry) delete(c.m, entry.sessionKey) entry.sessionKey = sessionKey entry.state = cs c.q.MoveToFront(elem) c.m[sessionKey] = elem } // Get returns the ClientSessionState value associated with a given key. It // returns (nil, false) if no value is found. func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) { c.Lock() defer c.Unlock() if elem, ok := c.m[sessionKey]; ok { c.q.MoveToFront(elem) return elem.Value.(*lruSessionCacheEntry).state, true } return nil, false } // TODO(jsing): Make these available to both crypto/x509 and crypto/tls. type dsaSignature struct { R, S *big.Int } type ecdsaSignature dsaSignature var emptyConfig Config func defaultConfig() *Config { return &emptyConfig } var ( once sync.Once varDefaultCipherSuites []uint16 varDefaultTLS13CipherSuites []uint16 ) func defaultCipherSuites() []uint16 { once.Do(initDefaultCipherSuites) return varDefaultCipherSuites } func defaultTLS13CipherSuites() []uint16 { once.Do(initDefaultCipherSuites) return varDefaultTLS13CipherSuites } func initDefaultCipherSuites() { var topCipherSuites, topTLS13CipherSuites []uint16 if cipherhw.AESGCMSupport() { // If AES-GCM hardware is provided then prioritise AES-GCM // cipher suites. topTLS13CipherSuites = []uint16{ TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256, } topCipherSuites = []uint16{ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, } } else { // Without AES-GCM hardware, we put the ChaCha20-Poly1305 // cipher suites first. topTLS13CipherSuites = []uint16{ TLS_CHACHA20_POLY1305_SHA256, TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384, } topCipherSuites = []uint16{ TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, } } varDefaultTLS13CipherSuites = make([]uint16, 0, len(cipherSuites)) varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, topTLS13CipherSuites...) varDefaultCipherSuites = make([]uint16, 0, len(cipherSuites)) varDefaultCipherSuites = append(varDefaultCipherSuites, topCipherSuites...) NextCipherSuite: for _, suite := range cipherSuites { if suite.flags&suiteDefaultOff != 0 { continue } if suite.flags&suiteTLS13 != 0 { for _, existing := range varDefaultTLS13CipherSuites { if existing == suite.id { continue NextCipherSuite } } varDefaultTLS13CipherSuites = append(varDefaultTLS13CipherSuites, suite.id) } else { for _, existing := range varDefaultCipherSuites { if existing == suite.id { continue NextCipherSuite } } varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id) } } varDefaultCipherSuites = append(varDefaultTLS13CipherSuites, varDefaultCipherSuites...) } func unexpectedMessageError(wanted, got interface{}) error { return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted) } func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool { for _, s := range supportedSignatureAlgorithms { if s == sigAlg { return true } } return false } // signatureFromSignatureScheme maps a signature algorithm to the underlying // signature method (without hash function). func signatureFromSignatureScheme(signatureAlgorithm SignatureScheme) uint8 { switch signatureAlgorithm { case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512: return signaturePKCS1v15 case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512: return signatureRSAPSS case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512: return signatureECDSA default: return 0 } } // TODO(kk): Use variable length encoding? func getUint24(b []byte) int { n := int(b[2]) n += int(b[1] << 8) n += int(b[0] << 16) return n } func putUint24(b []byte, n int) { b[0] = byte(n >> 16) b[1] = byte(n >> 8) b[2] = byte(n & 0xff) }