// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // TLS low level connection and record layer package tls import ( "bytes" "crypto/cipher" "crypto/subtle" "crypto/x509" "encoding/binary" "errors" "fmt" "io" "net" "sync" "sync/atomic" "time" ) // A Conn represents a secured connection. // It implements the net.Conn interface. type Conn struct { // constant conn net.Conn isClient bool phase handshakeStatus // protected by in.Mutex // handshakeConfirmed is an atomic bool for phase == handshakeConfirmed handshakeConfirmed int32 // confirmMutex is held by any read operation before handshakeConfirmed confirmMutex sync.Mutex // constant after handshake; protected by handshakeMutex handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex handshakeErr error // error resulting from handshake connID []byte // Random connection id clientHello []byte // ClientHello packet contents vers uint16 // TLS version haveVers bool // version has been negotiated config *Config // configuration passed to constructor // handshakeComplete is true if the connection reached application data // and it's equivalent to phase > handshakeRunning handshakeComplete bool // handshakes counts the number of handshakes performed on the // connection so far. If renegotiation is disabled then this is either // zero or one. handshakes int didResume bool // whether this connection was a session resumption cipherSuite uint16 ocspResponse []byte // stapled OCSP response scts [][]byte // Signed certificate timestamps from server peerCertificates []*x509.Certificate // verifiedChains contains the certificate chains that we built, as // opposed to the ones presented by the server. verifiedChains [][]*x509.Certificate // verifiedDc is set by a client who negotiates the use of a valid delegated // credential. verifiedDc *delegatedCredential // serverName contains the server name indicated by the client, if any. serverName string // secureRenegotiation is true if the server echoed the secure // renegotiation extension. (This is meaningless as a server because // renegotiation is not supported in that case.) secureRenegotiation bool // clientFinishedIsFirst is true if the client sent the first Finished // message during the most recent handshake. This is recorded because // the first transmitted Finished message is the tls-unique // channel-binding value. clientFinishedIsFirst bool // closeNotifyErr is any error from sending the alertCloseNotify record. closeNotifyErr error // closeNotifySent is true if the Conn attempted to send an // alertCloseNotify record. closeNotifySent bool // clientFinished and serverFinished contain the Finished message sent // by the client or server in the most recent handshake. This is // retained to support the renegotiation extension and tls-unique // channel-binding. clientFinished [12]byte serverFinished [12]byte clientProtocol string clientProtocolFallback bool // ticketMaxEarlyData is the maximum bytes of 0-RTT application data // that the client is allowed to send on the ticket it used. ticketMaxEarlyData int64 // input/output in, out halfConn // in.Mutex < out.Mutex rawInput *block // raw input, right off the wire input *block // application data waiting to be read hand bytes.Buffer // handshake data waiting to be read buffering bool // whether records are buffered in sendBuf sendBuf []byte // a buffer of records waiting to be sent // bytesSent counts the bytes of application data sent. // packetsSent counts packets. bytesSent int64 packetsSent int64 // warnCount counts the number of consecutive warning alerts received // by Conn.readRecord. Protected by in.Mutex. warnCount int // activeCall is an atomic int32; the low bit is whether Close has // been called. the rest of the bits are the number of goroutines // in Conn.Write. activeCall int32 // TLS 1.3 needs the server state until it reaches the Client Finished hs *serverHandshakeState // earlyDataBytes is the number of bytes of early data received so // far. Tracked to enforce max_early_data_size. // We don't keep track of rejected 0-RTT data since there's no need // to ever buffer it. in.Mutex. earlyDataBytes int64 // binder is the value of the PSK binder that was validated to // accept the 0-RTT data. Exposed as ConnectionState.Unique0RTTToken. binder []byte tmp [16]byte } type handshakeStatus int const ( handshakeRunning handshakeStatus = iota discardingEarlyData readingEarlyData waitingClientFinished readingClientFinished handshakeConfirmed ) // Access to net.Conn methods. // Cannot just embed net.Conn because that would // export the struct field too. // LocalAddr returns the local network address. func (c *Conn) LocalAddr() net.Addr { return c.conn.LocalAddr() } // RemoteAddr returns the remote network address. func (c *Conn) RemoteAddr() net.Addr { return c.conn.RemoteAddr() } // SetDeadline sets the read and write deadlines associated with the connection. // A zero value for t means Read and Write will not time out. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetDeadline(t time.Time) error { return c.conn.SetDeadline(t) } // SetReadDeadline sets the read deadline on the underlying connection. // A zero value for t means Read will not time out. func (c *Conn) SetReadDeadline(t time.Time) error { return c.conn.SetReadDeadline(t) } // SetWriteDeadline sets the write deadline on the underlying connection. // A zero value for t means Write will not time out. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetWriteDeadline(t time.Time) error { return c.conn.SetWriteDeadline(t) } // A halfConn represents one direction of the record layer // connection, either sending or receiving. type halfConn struct { sync.Mutex err error // first permanent error version uint16 // protocol version cipher interface{} // cipher algorithm mac macFunction seq [8]byte // 64-bit sequence number bfree *block // list of free blocks additionalData [13]byte // to avoid allocs; interface method args escape nextCipher interface{} // next encryption state nextMac macFunction // next MAC algorithm // used to save allocating a new buffer for each MAC. inDigestBuf, outDigestBuf []byte traceErr func(error) } func (hc *halfConn) setErrorLocked(err error) error { hc.err = err if hc.traceErr != nil { hc.traceErr(err) } return err } // prepareCipherSpec sets the encryption and MAC states // that a subsequent changeCipherSpec will use. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { hc.version = version hc.nextCipher = cipher hc.nextMac = mac } // changeCipherSpec changes the encryption and MAC states // to the ones previously passed to prepareCipherSpec. func (hc *halfConn) changeCipherSpec() error { if hc.nextCipher == nil { return alertInternalError } hc.cipher = hc.nextCipher hc.mac = hc.nextMac hc.nextCipher = nil hc.nextMac = nil for i := range hc.seq { hc.seq[i] = 0 } return nil } func (hc *halfConn) setCipher(version uint16, cipher interface{}) { hc.version = version hc.cipher = cipher for i := range hc.seq { hc.seq[i] = 0 } } // incSeq increments the sequence number. func (hc *halfConn) incSeq() { for i := 7; i >= 0; i-- { hc.seq[i]++ if hc.seq[i] != 0 { return } } // Not allowed to let sequence number wrap. // Instead, must renegotiate before it does. // Not likely enough to bother. panic("TLS: sequence number wraparound") } // extractPadding returns, in constant time, the length of the padding to remove // from the end of payload. It also returns a byte which is equal to 255 if the // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 func extractPadding(payload []byte) (toRemove int, good byte) { if len(payload) < 1 { return 0, 0 } paddingLen := payload[len(payload)-1] t := uint(len(payload)-1) - uint(paddingLen) // if len(payload) >= (paddingLen - 1) then the MSB of t is zero good = byte(int32(^t) >> 31) // The maximum possible padding length plus the actual length field toCheck := 256 // The length of the padded data is public, so we can use an if here if toCheck > len(payload) { toCheck = len(payload) } for i := 0; i < toCheck; i++ { t := uint(paddingLen) - uint(i) // if i <= paddingLen then the MSB of t is zero mask := byte(int32(^t) >> 31) b := payload[len(payload)-1-i] good &^= mask&paddingLen ^ mask&b } // We AND together the bits of good and replicate the result across // all the bits. good &= good << 4 good &= good << 2 good &= good << 1 good = uint8(int8(good) >> 7) toRemove = int(paddingLen) + 1 return } // extractPaddingSSL30 is a replacement for extractPadding in the case that the // protocol version is SSLv3. In this version, the contents of the padding // are random and cannot be checked. func extractPaddingSSL30(payload []byte) (toRemove int, good byte) { if len(payload) < 1 { return 0, 0 } paddingLen := int(payload[len(payload)-1]) + 1 if paddingLen > len(payload) { return 0, 0 } return paddingLen, 255 } func roundUp(a, b int) int { return a + (b-a%b)%b } // cbcMode is an interface for block ciphers using cipher block chaining. type cbcMode interface { cipher.BlockMode SetIV([]byte) } // decrypt checks and strips the mac and decrypts the data in b. Returns a // success boolean, the number of bytes to skip from the start of the record in // order to get the application payload, and an optional alert value. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { // pull out payload payload := b.data[recordHeaderLen:] macSize := 0 if hc.mac != nil { macSize = hc.mac.Size() } paddingGood := byte(255) paddingLen := 0 explicitIVLen := 0 // decrypt if hc.cipher != nil { switch c := hc.cipher.(type) { case cipher.Stream: c.XORKeyStream(payload, payload) case aead: explicitIVLen = c.explicitNonceLen() if len(payload) < explicitIVLen { return false, 0, alertBadRecordMAC } nonce := payload[:explicitIVLen] payload = payload[explicitIVLen:] if len(nonce) == 0 { nonce = hc.seq[:] } var additionalData []byte if hc.version < VersionTLS13 { copy(hc.additionalData[:], hc.seq[:]) copy(hc.additionalData[8:], b.data[:3]) n := len(payload) - c.Overhead() hc.additionalData[11] = byte(n >> 8) hc.additionalData[12] = byte(n) additionalData = hc.additionalData[:] } else { if len(payload) > int((1<<14)+256) { return false, 0, alertRecordOverflow } // Check AD header, see 5.2 of RFC8446 additionalData = make([]byte, 5) additionalData[0] = byte(recordTypeApplicationData) binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12) binary.BigEndian.PutUint16(additionalData[3:], uint16(len(payload))) } var err error payload, err = c.Open(payload[:0], nonce, payload, additionalData) if err != nil { return false, 0, alertBadRecordMAC } b.resize(recordHeaderLen + explicitIVLen + len(payload)) case cbcMode: blockSize := c.BlockSize() if hc.version >= VersionTLS11 { explicitIVLen = blockSize } if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { return false, 0, alertBadRecordMAC } if explicitIVLen > 0 { c.SetIV(payload[:explicitIVLen]) payload = payload[explicitIVLen:] } c.CryptBlocks(payload, payload) if hc.version == VersionSSL30 { paddingLen, paddingGood = extractPaddingSSL30(payload) } else { paddingLen, paddingGood = extractPadding(payload) // To protect against CBC padding oracles like Lucky13, the data // past paddingLen (which is secret) is passed to the MAC // function as extra data, to be fed into the HMAC after // computing the digest. This makes the MAC constant time as // long as the digest computation is constant time and does not // affect the subsequent write. } default: panic("unknown cipher type") } } // check, strip mac if hc.mac != nil { if len(payload) < macSize { return false, 0, alertBadRecordMAC } // strip mac off payload, b.data n := len(payload) - macSize - paddingLen n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } b.data[3] = byte(n >> 8) b.data[4] = byte(n) remoteMAC := payload[n : n+macSize] localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:]) if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { return false, 0, alertBadRecordMAC } hc.inDigestBuf = localMAC b.resize(recordHeaderLen + explicitIVLen + n) } hc.incSeq() return true, recordHeaderLen + explicitIVLen, 0 } // padToBlockSize calculates the needed padding block, if any, for a payload. // On exit, prefix aliases payload and extends to the end of the last full // block of payload. finalBlock is a fresh slice which contains the contents of // any suffix of payload as well as the needed padding to make finalBlock a // full block. func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { overrun := len(payload) % blockSize paddingLen := blockSize - overrun prefix = payload[:len(payload)-overrun] finalBlock = make([]byte, blockSize) copy(finalBlock, payload[len(payload)-overrun:]) for i := overrun; i < blockSize; i++ { finalBlock[i] = byte(paddingLen - 1) } return } // encrypt encrypts and macs the data in b. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { // mac if hc.mac != nil { mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil) n := len(b.data) b.resize(n + len(mac)) copy(b.data[n:], mac) hc.outDigestBuf = mac } payload := b.data[recordHeaderLen:] // encrypt if hc.cipher != nil { switch c := hc.cipher.(type) { case cipher.Stream: c.XORKeyStream(payload, payload) case aead: // explicitIVLen is always 0 for TLS1.3 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen overhead := c.Overhead() if hc.version >= VersionTLS13 { overhead++ // TODO(kk): why this is done? } b.resize(len(b.data) + overhead) nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] if len(nonce) == 0 { nonce = hc.seq[:] } payload = b.data[recordHeaderLen+explicitIVLen:] payload = payload[:payloadLen] var additionalData []byte if hc.version < VersionTLS13 { copy(hc.additionalData[:], hc.seq[:]) copy(hc.additionalData[8:], b.data[:3]) binary.BigEndian.PutUint16(hc.additionalData[11:], uint16(payloadLen)) additionalData = hc.additionalData[:] } else { // opaque type payload = payload[:len(payload)+1] payload[len(payload)-1] = b.data[0] b.data[0] = byte(recordTypeApplicationData) // Add AD header, see 5.2 of RFC8446 additionalData = make([]byte, 5) additionalData[0] = byte(recordTypeApplicationData) binary.BigEndian.PutUint16(additionalData[1:], VersionTLS12) binary.BigEndian.PutUint16(additionalData[3:], uint16(payloadLen+overhead)) } c.Seal(payload[:0], nonce, payload, additionalData) case cbcMode: blockSize := c.BlockSize() if explicitIVLen > 0 { c.SetIV(payload[:explicitIVLen]) payload = payload[explicitIVLen:] } prefix, finalBlock := padToBlockSize(payload, blockSize) b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) default: panic("unknown cipher type") } } // update length to include MAC and any block padding needed. n := len(b.data) - recordHeaderLen b.data[3] = byte(n >> 8) b.data[4] = byte(n) hc.incSeq() return true, 0 } // A block is a simple data buffer. type block struct { data []byte off int // index for Read link *block } // resize resizes block to be n bytes, growing if necessary. func (b *block) resize(n int) { if n > cap(b.data) { b.reserve(n) } b.data = b.data[0:n] } // reserve makes sure that block contains a capacity of at least n bytes. func (b *block) reserve(n int) { if cap(b.data) >= n { return } m := cap(b.data) if m == 0 { m = 1024 } for m < n { m *= 2 } data := make([]byte, len(b.data), m) copy(data, b.data) b.data = data } // readFromUntil reads from r into b until b contains at least n bytes // or else returns an error. func (b *block) readFromUntil(r io.Reader, n int) error { // quick case if len(b.data) >= n { return nil } // read until have enough. b.reserve(n) for { m, err := r.Read(b.data[len(b.data):cap(b.data)]) b.data = b.data[0 : len(b.data)+m] if len(b.data) >= n { // TODO(bradfitz,agl): slightly suspicious // that we're throwing away r.Read's err here. break } if err != nil { return err } } return nil } func (b *block) Read(p []byte) (n int, err error) { n = copy(p, b.data[b.off:]) b.off += n if b.off >= len(b.data) { err = io.EOF } return } // newBlock allocates a new block, from hc's free list if possible. func (hc *halfConn) newBlock() *block { b := hc.bfree if b == nil { return new(block) } hc.bfree = b.link b.link = nil b.resize(0) return b } // freeBlock returns a block to hc's free list. // The protocol is such that each side only has a block or two on // its free list at a time, so there's no need to worry about // trimming the list, etc. func (hc *halfConn) freeBlock(b *block) { b.link = hc.bfree hc.bfree = b } // splitBlock splits a block after the first n bytes, // returning a block with those n bytes and a // block with the remainder. the latter may be nil. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { if len(b.data) <= n { return b, nil } bb := hc.newBlock() bb.resize(len(b.data) - n) copy(bb.data, b.data[n:]) b.data = b.data[0:n] return b, bb } // RecordHeaderError results when a TLS record header is invalid. type RecordHeaderError struct { // Msg contains a human readable string that describes the error. Msg string // RecordHeader contains the five bytes of TLS record header that // triggered the error. RecordHeader [5]byte } func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { err.Msg = msg copy(err.RecordHeader[:], c.rawInput.data) return err } // readRecord reads the next TLS record from the connection // and updates the record layer state. // c.in.Mutex <= L; c.input == nil. // c.input can still be nil after a call, retry if so. func (c *Conn) readRecord(want recordType) error { // Caller must be in sync with connection: // handshake data if handshake not yet completed, // else application data. switch want { default: c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) case recordTypeHandshake, recordTypeChangeCipherSpec: if c.phase != handshakeRunning && c.phase != readingClientFinished { c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) } case recordTypeApplicationData: if c.phase == handshakeRunning || c.phase == readingClientFinished { c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) } } Again: if c.rawInput == nil { c.rawInput = c.in.newBlock() } b := c.rawInput // Read header, payload. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { // RFC suggests that EOF without an alertCloseNotify is // an error, but popular web sites seem to do this, // so we can't make it an error. // if err == io.EOF { // err = io.ErrUnexpectedEOF // } if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } typ := recordType(b.data[0]) // No valid TLS record has a type of 0x80, however SSLv2 handshakes // start with a uint16 length where the MSB is set and the first record // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests // an SSLv2 client. if want == recordTypeHandshake && typ == 0x80 { c.sendAlert(alertProtocolVersion) return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) } vers := uint16(b.data[1])<<8 | uint16(b.data[2]) n := int(b.data[3])<<8 | int(b.data[4]) if n > maxCiphertext { c.sendAlert(alertRecordOverflow) msg := fmt.Sprintf("oversized record received with length %d", n) return c.in.setErrorLocked(c.newRecordHeaderError(msg)) } if !c.haveVers { // First message, be extra suspicious: this might not be a TLS // client. Bail out before reading a full 'body', if possible. // The current max version is 3.3 so if the version is >= 16.0, // it's probably not real. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) } } if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } // Process message. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) // TLS 1.3 middlebox compatibility: skip over unencrypted CCS. if c.vers >= VersionTLS13 && typ == recordTypeChangeCipherSpec && c.phase != handshakeConfirmed { if len(b.data) != 6 || b.data[5] != 1 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } c.in.freeBlock(b) return c.in.err } peekedAlert := peekAlert(b) // peek at a possible alert before decryption ok, off, alertValue := c.in.decrypt(b) switch { case !ok && c.phase == discardingEarlyData: // If the client said that it's sending early data and we did not // accept it, we are expected to fail decryption. c.in.freeBlock(b) return nil case ok && c.phase == discardingEarlyData: c.phase = waitingClientFinished case !ok: c.in.traceErr, c.out.traceErr = nil, nil // not that interesting c.in.freeBlock(b) err := c.sendAlert(alertValue) // If decryption failed because the message is an unencrypted // alert, return a more meaningful error message if alertValue == alertBadRecordMAC && peekedAlert != nil { err = peekedAlert } return c.in.setErrorLocked(err) } b.off = off data := b.data[b.off:] if (c.vers < VersionTLS13 && len(data) > maxPlaintext) || len(data) > maxPlaintext+1 { c.in.freeBlock(b) return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) } // After checking the plaintext length, remove 1.3 padding and // extract the real content type. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.4. if c.vers >= VersionTLS13 { i := len(data) - 1 for i >= 0 { if data[i] != 0 { break } i-- } if i < 0 { c.in.freeBlock(b) return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } typ = recordType(data[i]) data = data[:i] b.resize(b.off + i) // shrinks, guaranteed not to reallocate } if typ != recordTypeAlert && len(data) > 0 { // this is a valid non-alert message: reset the count of alerts c.warnCount = 0 } switch typ { default: c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) case recordTypeAlert: if len(data) != 2 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } if alert(data[1]) == alertCloseNotify { c.in.setErrorLocked(io.EOF) break } switch data[0] { case alertLevelWarning: // drop on the floor c.in.freeBlock(b) c.warnCount++ if c.warnCount > maxWarnAlertCount { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(errors.New("tls: too many warn alerts")) } goto Again case alertLevelError: c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) default: c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } case recordTypeChangeCipherSpec: if typ != want || len(data) != 1 || data[0] != 1 || c.vers >= VersionTLS13 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } // Handshake messages are not allowed to fragment across the CCS if c.hand.Len() > 0 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } // Handshake messages are not allowed to fragment across the CCS if c.hand.Len() > 0 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } err := c.in.changeCipherSpec() if err != nil { c.in.setErrorLocked(c.sendAlert(err.(alert))) } case recordTypeApplicationData: if typ != want || c.phase == waitingClientFinished { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } if c.phase == readingEarlyData { c.earlyDataBytes += int64(len(b.data) - b.off) if c.earlyDataBytes > c.ticketMaxEarlyData { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } } c.input = b b = nil case recordTypeHandshake: // TODO(rsc): Should at least pick off connection close. // If early data was being read, a Finished message is expected // instead of (early) application data. Other post-handshake // messages include HelloRequest and NewSessionTicket. if typ != want && want != recordTypeApplicationData { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } c.hand.Write(data) } if b != nil { c.in.freeBlock(b) } return c.in.err } // peekAlert looks at a message to spot an unencrypted alert. It must be // called before decryption to avoid a side channel, and its result must // only be used if decryption fails, to avoid false positives. func peekAlert(b *block) error { if len(b.data) < 7 { return nil } if recordType(b.data[0]) != recordTypeAlert { return nil } return &net.OpError{Op: "remote error", Err: alert(b.data[6])} } // sendAlert sends a TLS alert message. // c.out.Mutex <= L. func (c *Conn) sendAlertLocked(err alert) error { switch err { case alertNoRenegotiation, alertCloseNotify: c.tmp[0] = alertLevelWarning default: c.tmp[0] = alertLevelError } c.tmp[1] = byte(err) _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) if err == alertCloseNotify { // closeNotify is a special case in that it isn't an error. return writeErr } return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) } // sendAlert sends a TLS alert message. // L < c.out.Mutex. func (c *Conn) sendAlert(err alert) error { c.out.Lock() defer c.out.Unlock() return c.sendAlertLocked(err) } const ( // tcpMSSEstimate is a conservative estimate of the TCP maximum segment // size (MSS). A constant is used, rather than querying the kernel for // the actual MSS, to avoid complexity. The value here is the IPv6 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 // bytes) and a TCP header with timestamps (32 bytes). tcpMSSEstimate = 1208 // recordSizeBoostThreshold is the number of bytes of application data // sent after which the TLS record size will be increased to the // maximum. recordSizeBoostThreshold = 128 * 1024 ) // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the // next application data record. There is the following trade-off: // // - For latency-sensitive applications, such as web browsing, each TLS // record should fit in one TCP segment. // - For throughput-sensitive applications, such as large file transfers, // larger TLS records better amortize framing and encryption overheads. // // A simple heuristic that works well in practice is to use small records for // the first 1MB of data, then use larger records for subsequent data, and // reset back to smaller records after the connection becomes idle. See "High // Performance Web Networking", Chapter 4, or: // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ // // In the interests of simplicity and determinism, this code does not attempt // to reset the record size once the connection is idle, however. // // c.out.Mutex <= L. func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { return maxPlaintext } if c.bytesSent >= recordSizeBoostThreshold { return maxPlaintext } // Subtract TLS overheads to get the maximum payload size. macSize := 0 if c.out.mac != nil { macSize = c.out.mac.Size() } payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen if c.out.cipher != nil { switch ciph := c.out.cipher.(type) { case cipher.Stream: payloadBytes -= macSize case cipher.AEAD: payloadBytes -= ciph.Overhead() if c.vers >= VersionTLS13 { payloadBytes -= 1 // ContentType } case cbcMode: blockSize := ciph.BlockSize() // The payload must fit in a multiple of blockSize, with // room for at least one padding byte. payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 // The MAC is appended before padding so affects the // payload size directly. payloadBytes -= macSize default: panic("unknown cipher type") } } // Allow packet growth in arithmetic progression up to max. pkt := c.packetsSent c.packetsSent++ if pkt > 1000 { return maxPlaintext // avoid overflow in multiply below } n := payloadBytes * int(pkt+1) if n > maxPlaintext { n = maxPlaintext } return n } // c.out.Mutex <= L. func (c *Conn) write(data []byte) (int, error) { if c.buffering { c.sendBuf = append(c.sendBuf, data...) return len(data), nil } n, err := c.conn.Write(data) c.bytesSent += int64(n) return n, err } func (c *Conn) flush() (int, error) { if len(c.sendBuf) == 0 { return 0, nil } n, err := c.conn.Write(c.sendBuf) c.bytesSent += int64(n) c.sendBuf = nil c.buffering = false return n, err } // writeRecordLocked writes a TLS record with the given type and payload to the // connection and updates the record layer state. // c.out.Mutex <= L. func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { b := c.out.newBlock() defer c.out.freeBlock(b) var n int for len(data) > 0 { explicitIVLen := 0 explicitIVIsSeq := false var cbc cbcMode if c.out.version >= VersionTLS11 { var ok bool if cbc, ok = c.out.cipher.(cbcMode); ok { explicitIVLen = cbc.BlockSize() } } if explicitIVLen == 0 { if c, ok := c.out.cipher.(aead); ok { explicitIVLen = c.explicitNonceLen() // The AES-GCM construction in TLS has an // explicit nonce so that the nonce can be // random. However, the nonce is only 8 bytes // which is too small for a secure, random // nonce. Therefore we use the sequence number // as the nonce. explicitIVIsSeq = explicitIVLen > 0 } } m := len(data) if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { m = maxPayload } b.resize(recordHeaderLen + explicitIVLen + m) b.data[0] = byte(typ) vers := c.vers if vers == 0 { // Some TLS servers fail if the record version is // greater than TLS 1.0 for the initial ClientHello. vers = VersionTLS10 } if c.vers >= VersionTLS13 { // TLS 1.3 froze the record layer version at { 3, 1 }. // See https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-5.1. // But for draft 22, this was changed to { 3, 3 }. vers = VersionTLS12 } b.data[1] = byte(vers >> 8) b.data[2] = byte(vers) b.data[3] = byte(m >> 8) b.data[4] = byte(m) if explicitIVLen > 0 { explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] if explicitIVIsSeq { copy(explicitIV, c.out.seq[:]) } else { if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { return n, err } } } copy(b.data[recordHeaderLen+explicitIVLen:], data) c.out.encrypt(b, explicitIVLen) if _, err := c.write(b.data); err != nil { return n, err } n += m data = data[m:] } if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 { if err := c.out.changeCipherSpec(); err != nil { return n, c.sendAlertLocked(err.(alert)) } } return n, nil } // writeRecord writes a TLS record with the given type and payload to the // connection and updates the record layer state. // L < c.out.Mutex. func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { c.out.Lock() defer c.out.Unlock() return c.writeRecordLocked(typ, data) } // readHandshake reads the next handshake message from // the record layer. // c.in.Mutex < L; c.out.Mutex < L. func (c *Conn) readHandshake() (interface{}, error) { for c.hand.Len() < 4 { if err := c.in.err; err != nil { return nil, err } if err := c.readRecord(recordTypeHandshake); err != nil { return nil, err } } data := c.hand.Bytes() n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) if n > maxHandshake { c.sendAlertLocked(alertInternalError) return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) } for c.hand.Len() < 4+n { if err := c.in.err; err != nil { return nil, err } if err := c.readRecord(recordTypeHandshake); err != nil { return nil, err } } data = c.hand.Next(4 + n) var m handshakeMessage switch data[0] { case typeHelloRequest: m = new(helloRequestMsg) case typeClientHello: m = new(clientHelloMsg) case typeServerHello: m = new(serverHelloMsg) case typeEncryptedExtensions: m = new(encryptedExtensionsMsg) case typeNewSessionTicket: if c.vers >= VersionTLS13 { m = new(newSessionTicketMsg13) } else { m = new(newSessionTicketMsg) } case typeEndOfEarlyData: m = new(endOfEarlyDataMsg) case typeCertificate: if c.vers >= VersionTLS13 { m = new(certificateMsg13) } else { m = new(certificateMsg) } case typeCertificateRequest: if c.vers >= VersionTLS13 { m = new(certificateRequestMsg13) } else { m = &certificateRequestMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } } case typeCertificateStatus: m = new(certificateStatusMsg) case typeServerKeyExchange: m = new(serverKeyExchangeMsg) case typeServerHelloDone: m = new(serverHelloDoneMsg) case typeClientKeyExchange: m = new(clientKeyExchangeMsg) case typeCertificateVerify: m = &certificateVerifyMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } case typeNextProtocol: m = new(nextProtoMsg) case typeFinished: m = new(finishedMsg) default: return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } // The handshake message unmarshalers // expect to be able to keep references to data, // so pass in a fresh copy that won't be overwritten. data = append([]byte(nil), data...) if unmarshalAlert := m.unmarshal(data); unmarshalAlert != alertSuccess { return nil, c.in.setErrorLocked(c.sendAlert(unmarshalAlert)) } return m, nil } var ( errClosed = errors.New("tls: use of closed connection") errShutdown = errors.New("tls: protocol is shutdown") ) // Write writes data to the connection. func (c *Conn) Write(b []byte) (int, error) { // interlock with Close below for { x := atomic.LoadInt32(&c.activeCall) if x&1 != 0 { return 0, errClosed } if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { defer atomic.AddInt32(&c.activeCall, -2) break } } if err := c.Handshake(); err != nil { return 0, err } c.out.Lock() defer c.out.Unlock() if err := c.out.err; err != nil { return 0, err } if !c.handshakeComplete { return 0, alertInternalError } if c.closeNotifySent { return 0, errShutdown } // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext // attack when using block mode ciphers due to predictable IVs. // This can be prevented by splitting each Application Data // record into two records, effectively randomizing the IV. // // http://www.openssl.org/~bodo/tls-cbc.txt // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html var m int if len(b) > 1 && c.vers <= VersionTLS10 { if _, ok := c.out.cipher.(cipher.BlockMode); ok { n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) if err != nil { return n, c.out.setErrorLocked(err) } m, b = 1, b[1:] } } n, err := c.writeRecordLocked(recordTypeApplicationData, b) return n + m, c.out.setErrorLocked(err) } // Process Handshake messages after the handshake has completed. // c.in.Mutex <= L func (c *Conn) handlePostHandshake() error { msg, err := c.readHandshake() if err != nil { return err } switch hm := msg.(type) { case *helloRequestMsg: return c.handleRenegotiation(hm) case *newSessionTicketMsg13: if !c.isClient { c.sendAlert(alertUnexpectedMessage) return alertUnexpectedMessage } return nil // TODO implement session tickets default: c.sendAlert(alertUnexpectedMessage) return alertUnexpectedMessage } } // handleRenegotiation processes a HelloRequest handshake message. // c.in.Mutex <= L func (c *Conn) handleRenegotiation(*helloRequestMsg) error { if !c.isClient { return c.sendAlert(alertNoRenegotiation) } if c.vers >= VersionTLS13 { return c.sendAlert(alertNoRenegotiation) } switch c.config.Renegotiation { case RenegotiateNever: return c.sendAlert(alertNoRenegotiation) case RenegotiateOnceAsClient: if c.handshakes > 1 { return c.sendAlert(alertNoRenegotiation) } case RenegotiateFreelyAsClient: // Ok. default: c.sendAlert(alertInternalError) return errors.New("tls: unknown Renegotiation value") } c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() c.phase = handshakeRunning c.handshakeComplete = false if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { c.handshakes++ } return c.handshakeErr } // ConfirmHandshake waits for the handshake to reach a point at which // the connection is certainly not replayed. That is, after receiving // the Client Finished. // // If ConfirmHandshake returns an error and until ConfirmHandshake // returns, the 0-RTT data should not be trusted not to be replayed. // // This is only meaningful in TLS 1.3 when Accept0RTTData is true and the // client sent valid 0-RTT data. In any other case it's equivalent to // calling Handshake. func (c *Conn) ConfirmHandshake() error { if c.isClient { panic("ConfirmHandshake should only be called for servers") } if err := c.Handshake(); err != nil { return err } if c.vers < VersionTLS13 { return nil } c.confirmMutex.Lock() if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed c.confirmMutex.Unlock() return nil } else { defer func() { // If we transitioned to handshakeConfirmed we already released the lock, // otherwise do it here. if c.phase != handshakeConfirmed { c.confirmMutex.Unlock() } }() } c.in.Lock() defer c.in.Unlock() var input *block // Try to read all data (if phase==readingEarlyData) or extract the // remaining data from the previous read that could not fit in the read // buffer (if c.input != nil). if c.phase == readingEarlyData || c.input != nil { buf := &bytes.Buffer{} if _, err := buf.ReadFrom(earlyDataReader{c}); err != nil { c.in.setErrorLocked(err) return err } input = &block{data: buf.Bytes()} } // At this point, earlyDataReader has read all early data and received // the end_of_early_data signal. Expect a Finished message. // Locks held so far: c.confirmMutex, c.in // not confirmed implies c.phase == discardingEarlyData || c.phase == waitingClientFinished for c.phase != handshakeConfirmed { if err := c.hs.readClientFinished13(true); err != nil { c.in.setErrorLocked(err) return err } } if c.phase != handshakeConfirmed { panic("should have reached handshakeConfirmed state") } if c.input != nil { panic("should not have read past the Client Finished") } c.input = input return nil } // earlyDataReader wraps a Conn and reads only early data, both buffered // and still on the wire. type earlyDataReader struct { c *Conn } // c.in.Mutex <= L func (r earlyDataReader) Read(b []byte) (n int, err error) { c := r.c if c.phase == handshakeConfirmed { // c.input might not be early data panic("earlyDataReader called at handshakeConfirmed") } for c.input == nil && c.in.err == nil && c.phase == readingEarlyData { if err := c.readRecord(recordTypeApplicationData); err != nil { return 0, err } if c.hand.Len() > 0 { if err := c.handleEndOfEarlyData(); err != nil { return 0, err } } } if err := c.in.err; err != nil { return 0, err } if c.input != nil { n, err = c.input.Read(b) if err == io.EOF { err = nil c.in.freeBlock(c.input) c.input = nil } } // Following early application data, an end_of_early_data is expected. if err == nil && c.phase != readingEarlyData && c.input == nil { err = io.EOF } return } // Read can be made to time out and return a net.Error with Timeout() == true // after a fixed time limit; see SetDeadline and SetReadDeadline. func (c *Conn) Read(b []byte) (n int, err error) { if err = c.Handshake(); err != nil { return } if len(b) == 0 { // Put this after Handshake, in case people were calling // Read(nil) for the side effect of the Handshake. return } c.confirmMutex.Lock() if atomic.LoadInt32(&c.handshakeConfirmed) == 1 { // c.phase == handshakeConfirmed c.confirmMutex.Unlock() } else { defer func() { // If we transitioned to handshakeConfirmed we already released the lock, // otherwise do it here. if c.phase != handshakeConfirmed { c.confirmMutex.Unlock() } }() } c.in.Lock() defer c.in.Unlock() // Some OpenSSL servers send empty records in order to randomize the // CBC IV. So this loop ignores a limited number of empty records. const maxConsecutiveEmptyRecords = 100 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { for c.input == nil && c.in.err == nil { if err := c.readRecord(recordTypeApplicationData); err != nil { // Soft error, like EAGAIN return 0, err } if c.hand.Len() > 0 { if c.phase == readingEarlyData || c.phase == waitingClientFinished { if c.phase == readingEarlyData { if err := c.handleEndOfEarlyData(); err != nil { return 0, err } } // Server has received all early data, confirm // by reading the Client Finished message. if err := c.hs.readClientFinished13(true); err != nil { c.in.setErrorLocked(err) return 0, err } continue } if err := c.handlePostHandshake(); err != nil { return 0, err } } } if err := c.in.err; err != nil { return 0, err } n, err = c.input.Read(b) if err == io.EOF { err = nil c.in.freeBlock(c.input) c.input = nil } // If a close-notify alert is waiting, read it so that // we can return (n, EOF) instead of (n, nil), to signal // to the HTTP response reading goroutine that the // connection is now closed. This eliminates a race // where the HTTP response reading goroutine would // otherwise not observe the EOF until its next read, // by which time a client goroutine might have already // tried to reuse the HTTP connection for a new // request. // See https://codereview.appspot.com/76400046 // and https://golang.org/issue/3514 if ri := c.rawInput; ri != nil && n != 0 && err == nil && c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { err = recErr // will be io.EOF on closeNotify } } if n != 0 || err != nil { return n, err } } return 0, io.ErrNoProgress } // Close closes the connection. func (c *Conn) Close() error { // Interlock with Conn.Write above. var x int32 for { x = atomic.LoadInt32(&c.activeCall) if x&1 != 0 { return errClosed } if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { break } } if x != 0 { // io.Writer and io.Closer should not be used concurrently. // If Close is called while a Write is currently in-flight, // interpret that as a sign that this Close is really just // being used to break the Write and/or clean up resources and // avoid sending the alertCloseNotify, which may block // waiting on handshakeMutex or the c.out mutex. return c.conn.Close() } var alertErr error c.handshakeMutex.Lock() if c.handshakeComplete { alertErr = c.closeNotify() } c.handshakeMutex.Unlock() if err := c.conn.Close(); err != nil { return err } return alertErr } var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") // CloseWrite shuts down the writing side of the connection. It should only be // called once the handshake has completed and does not call CloseWrite on the // underlying connection. Most callers should just use Close. func (c *Conn) CloseWrite() error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if !c.handshakeComplete { return errEarlyCloseWrite } return c.closeNotify() } func (c *Conn) closeNotify() error { c.out.Lock() defer c.out.Unlock() if !c.closeNotifySent { c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) c.closeNotifySent = true } return c.closeNotifyErr } // Handshake runs the client or server handshake // protocol if it has not yet been run. // Most uses of this package need not call Handshake // explicitly: the first Read or Write will call it automatically. // // In TLS 1.3 Handshake returns after the client and server first flights, // without waiting for the Client Finished. func (c *Conn) Handshake() error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if err := c.handshakeErr; err != nil { return err } if c.handshakeComplete { return nil } c.in.Lock() defer c.in.Unlock() // The handshake cannot have completed when handshakeMutex was unlocked // because this goroutine set handshakeCond. if c.handshakeErr != nil || c.handshakeComplete { panic("handshake should not have been able to complete after handshakeCond was set") } c.connID = make([]byte, 8) if _, err := io.ReadFull(c.config.rand(), c.connID); err != nil { return err } if c.isClient { c.handshakeErr = c.clientHandshake() } else { c.handshakeErr = c.serverHandshake() } if c.handshakeErr == nil { c.handshakes++ } else { // If an error occurred during the hadshake try to flush the // alert that might be left in the buffer. c.flush() } if c.handshakeErr == nil && !c.handshakeComplete { panic("handshake should have had a result.") } return c.handshakeErr } // ConnectionState returns basic TLS details about the connection. func (c *Conn) ConnectionState() ConnectionState { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() var state ConnectionState state.HandshakeComplete = c.handshakeComplete state.ServerName = c.serverName if c.handshakeComplete { state.ConnectionID = c.connID state.ClientHello = c.clientHello state.Version = c.vers state.NegotiatedProtocol = c.clientProtocol state.DidResume = c.didResume state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback state.CipherSuite = c.cipherSuite state.PeerCertificates = c.peerCertificates state.VerifiedChains = c.verifiedChains state.SignedCertificateTimestamps = c.scts state.OCSPResponse = c.ocspResponse if c.verifiedDc != nil { state.DelegatedCredential = c.verifiedDc.raw } state.HandshakeConfirmed = atomic.LoadInt32(&c.handshakeConfirmed) == 1 if !state.HandshakeConfirmed { state.Unique0RTTToken = c.binder } if !c.didResume { if c.clientFinishedIsFirst { state.TLSUnique = c.clientFinished[:] } else { state.TLSUnique = c.serverFinished[:] } } } return state } // OCSPResponse returns the stapled OCSP response from the TLS server, if // any. (Only valid for client connections.) func (c *Conn) OCSPResponse() []byte { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() return c.ocspResponse } // VerifyHostname checks that the peer certificate chain is valid for // connecting to host. If so, it returns nil; if not, it returns an error // describing the problem. func (c *Conn) VerifyHostname(host string) error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if !c.isClient { return errors.New("tls: VerifyHostname called on TLS server connection") } if !c.handshakeComplete { return errors.New("tls: handshake has not yet been performed") } if len(c.verifiedChains) == 0 { return errors.New("tls: handshake did not verify certificate chain") } return c.peerCertificates[0].VerifyHostname(host) }