/* xmss.c version 20150811 Andreas Hülsing Public domain. */ #include "xmss_fast.h" #include #include #include #include #include "randombytes.h" #include "wots.h" #include "hash.h" #include "prg.h" #include "xmss_commons.h" // For testing #include "stdio.h" /** * Macros used to manipulate the respective fields * in the 16byte hash address */ #define SET_LAYER_ADDRESS(a, v) {\ a[6] = (a[6] & 3) | ((v << 2) & 255);\ a[5] = (a[5] & 252) | ((v >> 6) & 255);} #define SET_TREE_ADDRESS(a, v) {\ a[9] = (a[9] & 3) | ((v << 2) & 255);\ a[8] = (v >> 6) & 255;\ a[7] = (v >> 14) & 255;\ a[6] = (a[6] & 252) | ((v >> 22) & 255);} #define SET_OTS_BIT(a, b) {\ a[9] = (a[9] & 253) | (b << 1);} #define SET_OTS_ADDRESS(a, v) {\ a[12] = (a[12] & 1) | ((v << 1) & 255);\ a[11] = (v >> 7) & 255;\ a[10] = (v >> 15) & 255;\ a[9] = (a[9] & 254) | ((v >> 23) & 1);} #define ZEROISE_OTS_ADDR(a) {\ a[12] = (a[12] & 254);\ a[13] = 0;\ a[14] = 0;\ a[15] = 0;} #define SET_LTREE_BIT(a, b) {\ a[9] = (a[9] & 254) | b;} #define SET_LTREE_ADDRESS(a, v) {\ a[12] = v & 255;\ a[11] = (v >> 8) & 255;\ a[10] = (v >> 16) & 255;} #define SET_LTREE_TREE_HEIGHT(a, v) {\ a[13] = (a[13] & 3) | ((v << 2) & 255);} #define SET_LTREE_TREE_INDEX(a, v) {\ a[15] = (a[15] & 3) | ((v << 2) & 255);\ a[14] = (v >> 6) & 255;\ a[13] = (a[13] & 252) | ((v >> 14) & 3);} #define SET_NODE_PADDING(a) {\ a[10] = 0;\ a[11] = a[11] & 3;} #define SET_NODE_TREE_HEIGHT(a, v) {\ a[12] = (a[12] & 3) | ((v << 2) & 255);\ a[11] = (a[11] & 252) | ((v >> 6) & 3);} #define SET_NODE_TREE_INDEX(a, v) {\ a[15] = (a[15] & 3) | ((v << 2) & 255);\ a[14] = (v >> 6) & 255;\ a[13] = (v >> 14) & 255;\ a[12] = (a[12] & 252) | ((v >> 22) & 3);} /** * Used for pseudorandom keygeneration, * generates the seed for the WOTS keypair at address addr */ static void get_seed(unsigned char seed[32], const unsigned char *sk_seed, unsigned char addr[16]) { // Make sure that chain addr, hash addr, and key bit are 0! ZEROISE_OTS_ADDR(addr); // Generate pseudorandom value prg_with_counter(seed, 32, sk_seed, 32, addr); } /** * Initialize xmss params struct * parameter names are the same as in the draft * parameter k is K as used in the BDS algorithm */ int xmss_set_params(xmss_params *params, int m, int n, int h, int w, int k) { if(k >= h || k < 2 || (h - k) % 2){ fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n"); return 1; } params->h = h; params->m = m; params->n = n; params->k = k; wots_params wots_par; wots_set_params(&wots_par, m, n, w); params->wots_par = wots_par; return 0; } /** * Initialize BDS state struct * parameter names are the same as used in the description of the BDS traversal */ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) { state->stack = stack; state->stackoffset = stackoffset; state->stacklevels = stacklevels; state->auth = auth; state->keep = keep; state->treehash = treehash; state->retain = retain; state->next_leaf = next_leaf; } /** * Initialize xmssmt_params struct * parameter names are the same as in the draft * * Especially h is the total tree height, i.e. the XMSS trees have height h/d */ int xmssmt_set_params(xmssmt_params *params, int m, int n, int h, int d, int w, int k) { if(h % d){ fprintf(stderr, "d must divide h without remainder!\n"); return 1; } params->h = h; params->d = d; params->m = m; params->n = n; params->index_len = (h + 7) / 8; xmss_params xmss_par; if (xmss_set_params(&xmss_par, m, n, (h/d), w, k)) { return 1; } params->xmss_par = xmss_par; return 0; } /** * Computes a leaf from a WOTS public key using an L-tree. */ static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16]) { unsigned int l = params->wots_par.len; unsigned int n = params->n; unsigned long i = 0; unsigned int height = 0; //ADRS.setTreeHeight(0); SET_LTREE_TREE_HEIGHT(addr,height); unsigned long bound; while ( l > 1 ) { bound = l >> 1; //floor(l / 2); for ( i = 0; i < bound; i = i + 1 ) { //ADRS.setTreeIndex(i); SET_LTREE_TREE_INDEX(addr,i); //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); hash_2n_n(wots_pk+i*n,wots_pk+i*2*n, pub_seed, addr, n); } //if ( l % 2 == 1 ) { if(l&1) { //pk[floor(l / 2) + 1] = pk[l]; memcpy(wots_pk+(l>>1)*n,wots_pk+(l-1)*n, n); //l = ceil(l / 2); l=(l>>1)+1; } else { //l = ceil(l / 2); l=(l>>1); } //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); height++; SET_LTREE_TREE_HEIGHT(addr,height); } //return pk[0]; memcpy(leaf,wots_pk,n); } /** * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. */ static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, unsigned char ltree_addr[16], unsigned char ots_addr[16]) { unsigned char seed[32]; unsigned char pk[params->wots_par.keysize]; get_seed(seed, sk_seed, ots_addr); wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); l_tree(leaf, pk, params, pub_seed, ltree_addr); } static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { int r = params->h, i; for (i = 0; i < treehash->stackusage; i++) { if (state->stacklevels[state->stackoffset - i - 1] < r) { r = state->stacklevels[state->stackoffset - i - 1]; } } return r; } /** * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. * Currently only used for key generation. * */ static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const unsigned char addr[16]) { unsigned int idx = index; unsigned int n = params->n; unsigned int h = params->h; unsigned int k = params->k; // use three different addresses because at this point we use all three formats in parallel unsigned char ots_addr[16]; unsigned char ltree_addr[16]; unsigned char node_addr[16]; memcpy(ots_addr, addr, 10); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); int lastnode,i; unsigned char stack[(height+1)*n]; unsigned int stacklevels[height+1]; unsigned int stackoffset=0; int nodeh; lastnode = idx+(1<treehash[i].h = i; state->treehash[i].completed = 1; state->treehash[i].stackusage = 0; } i = 0; for(;idx 0 && i == 3) { memcpy(state->treehash[0].node, stack+stackoffset*n, n); } while(stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) { nodeh = stacklevels[stackoffset-1]; if (i >> nodeh == 1) { memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n); } else { if (nodeh < h - k && i >> nodeh == 3) { memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n); } else if (nodeh >= h - k) { memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n); } } SET_NODE_TREE_HEIGHT(node_addr,stacklevels[stackoffset-1]); SET_NODE_TREE_INDEX(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); hash_2n_n(stack+(stackoffset-2)*n,stack+(stackoffset-2)*n, pub_seed, node_addr, n); stacklevels[stackoffset-2]++; stackoffset--; } i++; } for(i=0;in; unsigned char ots_addr[16]; unsigned char ltree_addr[16]; unsigned char node_addr[16]; memcpy(ots_addr, addr, 10); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); SET_LTREE_ADDRESS(ltree_addr, treehash->next_idx); SET_OTS_ADDRESS(ots_addr, treehash->next_idx); unsigned char nodebuffer[2 * n]; unsigned int nodeheight = 0; gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr); while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { memcpy(nodebuffer + n, nodebuffer, n); memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n); SET_NODE_TREE_HEIGHT(node_addr, nodeheight); SET_NODE_TREE_INDEX(node_addr, (treehash->next_idx >> (nodeheight+1))); hash_2n_n(nodebuffer, nodebuffer, pub_seed, node_addr, n); nodeheight++; treehash->stackusage--; state->stackoffset--; } if (nodeheight == treehash->h) { // this also implies stackusage == 0 memcpy(treehash->node, nodebuffer, n); treehash->completed = 1; } else { memcpy(state->stack + state->stackoffset*n, nodebuffer, n); treehash->stackusage++; state->stacklevels[state->stackoffset] = nodeheight; state->stackoffset++; treehash->next_idx++; } } /** * Computes a root node given a leaf and an authapth */ static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16]) { unsigned int n = params->n; int i,j; unsigned char buffer[2*n]; // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. // Otherwise, it is the other way around if(leafidx&1) { for(j=0;jh-1;i++) { SET_NODE_TREE_HEIGHT(addr,i); leafidx >>= 1; SET_NODE_TREE_INDEX(addr, leafidx); if(leafidx&1) { hash_2n_n(buffer+n,buffer,pub_seed, addr, n); for(j=0;jh-1)); leafidx >>= 1; SET_NODE_TREE_INDEX(addr, leafidx); hash_2n_n(root,buffer,pub_seed,addr,n); } /** * Performs one treehash update on the instance that needs it the most. * Returns 1 if such an instance was not found **/ static char bds_treehash_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const unsigned char addr[16]) { unsigned int i; int level, l_min, low; int h = params->h; int k = params->k; l_min = h; level = h - k; for (i = 0; i < h - k; i++) { if (state->treehash[i].completed) { low = h; } else if (state->treehash[i].stackusage == 0) { low = i; } else { low = treehash_minheight_on_stack(state, params, &(state->treehash[i])); } if (low < l_min) { level = i; l_min = low; } } if (level == h - k) { return 1; } treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr); return 0; } /** * Updates the state (typically NEXT_i) by adding a leaf and updating the stack * Returns 1 if all leaf nodes have already been processed **/ static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const unsigned char addr[16]) { unsigned char ltree_addr[16]; unsigned char node_addr[16]; unsigned char ots_addr[16]; int n = params->n; int h = params->h; int k = params->k; int nodeh; int idx = state->next_leaf; if (idx == 1 << h) { return 1; } memcpy(ots_addr, addr, 10); SET_OTS_BIT(ots_addr, 1); SET_OTS_ADDRESS(ots_addr, idx); memcpy(ltree_addr, addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); SET_LTREE_ADDRESS(ltree_addr, idx); memcpy(node_addr, addr, 10); SET_LTREE_BIT(node_addr, 0); SET_OTS_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); gen_leaf_wots(state->stack+state->stackoffset*n,sk_seed,params, pub_seed, ltree_addr, ots_addr); state->stacklevels[state->stackoffset] = 0; state->stackoffset++; if (h - k > 0 && idx == 3) { memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n); } while(state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { nodeh = state->stacklevels[state->stackoffset-1]; if (idx >> nodeh == 1) { memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n); } else { if (nodeh < h - k && idx >> nodeh == 3) { memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n); } else if (nodeh >= h - k) { memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n); } } SET_NODE_TREE_HEIGHT(node_addr, state->stacklevels[state->stackoffset-1]); SET_NODE_TREE_INDEX(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); hash_2n_n(state->stack+(state->stackoffset-2)*n,state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n); state->stacklevels[state->stackoffset-2]++; state->stackoffset--; } state->next_leaf++; return 0; } /** * Returns the auth path for node leaf_idx and computes the auth path for the * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo * in "Post Quantum Cryptography", Springer 2009. */ static int bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, const int updates, unsigned char *pub_seed, unsigned char addr[16]) { unsigned int i; int n = params->n; int h = params->h; int k = params->k; int tau = h; int startidx; int offset, rowidx; unsigned char buf[2 * n]; unsigned char ots_addr[16]; unsigned char ltree_addr[16]; unsigned char node_addr[16]; memcpy(ots_addr, addr, 10); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); for (i = 0; i < h; i++) { if (! ((leaf_idx >> i) & 1)) { tau = i; break; } } if (tau > 0) { memcpy(buf, state->auth + (tau-1) * n, n); // we need to do this before refreshing state->keep to prevent overwriting memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n); } if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n); } if (tau == 0) { SET_LTREE_ADDRESS(ltree_addr,leaf_idx); SET_OTS_ADDRESS(ots_addr,leaf_idx); gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr); } else { SET_NODE_TREE_HEIGHT(node_addr, (tau-1)); SET_NODE_TREE_INDEX(node_addr, leaf_idx >> tau); hash_2n_n(state->auth + tau * n, buf, pub_seed, node_addr, n); for (i = 0; i < tau; i++) { if (i < h - k) { memcpy(state->auth + i * n, state->treehash[i].node, n); } else { offset = (1 << (h - 1 - i)) + i - h; rowidx = ((leaf_idx >> i) - 1) >> 1; memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n); } } for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { startidx = leaf_idx + 1 + 3 * (1 << i); if (startidx < 1 << h) { state->treehash[i].h = i; state->treehash[i].next_idx = startidx; state->treehash[i].completed = 0; state->treehash[i].stackusage = 0; } } } int remaining = 0; for (i = 0; i < updates; i++) { if (bds_treehash_update(state, sk_seed, params, pub_seed, addr)) { remaining++; } } return remaining; } /* * Generates a XMSS key pair for a given parameter set. * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED] * Format pk: [root || PUB_SEED] omitting algo oid. */ int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params) { unsigned int n = params->n; unsigned int m = params->m; // Set idx = 0 sk[0] = 0; sk[1] = 0; sk[2] = 0; sk[3] = 0; // Init SK_SEED (n byte), SK_PRF (m byte), and PUB_SEED (n byte) randombytes(sk+4,2*n+m); // Copy PUB_SEED to public key memcpy(pk+n, sk+4+n+m,n); unsigned char addr[16] = {0,0,0,0}; // Compute root treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+n+m, addr); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) { unsigned int h = params->h; unsigned int n = params->n; unsigned int m = params->m; unsigned int k = params->k; // Extract SK unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; unsigned char sk_seed[n]; memcpy(sk_seed,sk+4,n); unsigned char sk_prf[m]; memcpy(sk_prf,sk+4+n,m); unsigned char pub_seed[n]; memcpy(pub_seed,sk+4+n+m,n); // Update SK sk[0] = ((idx + 1) >> 24) & 255; sk[1] = ((idx + 1) >> 16) & 255; sk[2] = ((idx + 1) >> 8) & 255; sk[3] = (idx + 1) & 255; // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // Init working params unsigned long long i; unsigned char R[m]; unsigned char msg_h[m]; unsigned char ots_seed[n]; unsigned char ots_addr[16] = {0,0,0,0}; // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom key prf_m(R, msg, msglen, sk_prf, m); // Then use it for message digest hash_m(msg_h, msg, msglen, R, m, m); // Start collecting signature *sig_msg_len = 0; // Copy index to signature sig_msg[0] = (idx >> 24) & 255; sig_msg[1] = (idx >> 16) & 255; sig_msg[2] = (idx >> 8) & 255; sig_msg[3] = idx & 255; sig_msg += 4; *sig_msg_len += 4; // Copy R to signature for(i=0; iwots_par), pub_seed, ots_addr); sig_msg += params->wots_par.keysize; *sig_msg_len += params->wots_par.keysize; // the auth path was already computed during the previous round memcpy(sig_msg, state->auth, h*n); bds_round(state, idx, sk_seed, params, (h - k) >> 1, pub_seed, ots_addr); sig_msg += params->h*n; *sig_msg_len += params->h*n; //Whipe secret elements? //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); memcpy(sig_msg,msg,msglen); *sig_msg_len += msglen; return 0; } /** * Verifies a given message signature pair under a given public key. */ int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned long long i, m_len; unsigned long idx=0; unsigned char wots_pk[params->wots_par.keysize]; unsigned char pkhash[n]; unsigned char root[n]; unsigned char msg_h[m]; unsigned char pub_seed[n]; memcpy(pub_seed,pk+n,n); // Init addresses unsigned char ots_addr[16] = {0,0,0,0}; unsigned char ltree_addr[16]; unsigned char node_addr[16]; SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); // Extract index idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; printf("verify:: idx = %lu\n",idx); sig_msg += 4; sig_msg_len -= 4; // hash message (recall, R is now on pole position at sig_msg unsigned long long tmp_sig_len = m+params->wots_par.keysize+params->h*n; m_len = sig_msg_len - tmp_sig_len; hash_m(msg_h, sig_msg + tmp_sig_len, m_len, sig_msg, m, m); sig_msg += m; sig_msg_len -= m; //----------------------- // Verify signature //----------------------- // Prepare Address SET_OTS_ADDRESS(ots_addr,idx); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); sig_msg += params->wots_par.keysize; sig_msg_len -= params->wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx); l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); sig_msg += params->h*n; sig_msg_len -= params->h*n; for(i=0;in; unsigned int m = params->m; unsigned int i; unsigned char ots_seed[params->n]; // Set idx = 0 for (i = 0; i < params->index_len; i++){ sk[i] = 0; } // Init SK_SEED (n byte), SK_PRF (m byte), and PUB_SEED (n byte) randombytes(sk+params->index_len,2*n+m); // Copy PUB_SEED to public key memcpy(pk+n, sk+params->index_len+n+m,n); // Set address to point on the single tree on layer d-1 unsigned char addr[16] = {0,0,0,0}; SET_OTS_BIT(addr,1); SET_TREE_ADDRESS(addr, 0); SET_OTS_ADDRESS(addr, 0); SET_LAYER_ADDRESS(addr, 0); // Set up state and compute wots signatures for all but topmost tree root for (i = 0; i < params->d - 1; i++) { SET_LAYER_ADDRESS(addr, i); SET_TREE_ADDRESS(addr, 0); SET_OTS_ADDRESS(addr, 0); // Compute seed for OTS key pair treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); SET_LAYER_ADDRESS(addr, (i+1)); get_seed(ots_seed, sk+params->index_len, addr); wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr); } treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned int tree_h = params->xmss_par.h; unsigned int k = params->xmss_par.k; unsigned int idx_len = params->index_len; unsigned long long idx_tree; unsigned long long idx_leaf; unsigned long long i, j; unsigned int updates; unsigned int first_nonwots; unsigned char sk_seed[n]; unsigned char sk_prf[m]; unsigned char pub_seed[n]; // Init working params unsigned char R[m]; unsigned char msg_h[m]; unsigned char ots_seed[n]; unsigned char ots_addr[16] = {0,0,0,0}; bds_state tmp; // Extract SK unsigned long long idx = 0; for(i = 0; i < idx_len; i++){ idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); } memcpy(sk_seed,sk+idx_len,n); memcpy(sk_prf,sk+idx_len+n,m); memcpy(pub_seed,sk+idx_len+n+m,n); // Update SK for(i = 0; i < idx_len; i++){ sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; } // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom key prf_m(R, msg, msglen, sk_prf, m); // Then use it for message digest hash_m(msg_h, msg, msglen, R, m, m); // Start collecting signature *sig_msg_len = 0; // Copy index to signature for(i = 0; i < idx_len; i++){ sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; } sig_msg += idx_len; *sig_msg_len += idx_len; // Copy R to signature for(i=0; i> tree_h; idx_leaf = (idx & ((1 << tree_h)-1)); SET_LAYER_ADDRESS(ots_addr,0); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_ADDRESS(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; *sig_msg_len += params->xmss_par.wots_par.keysize; memcpy(sig_msg, states[0].auth, tree_h*n); sig_msg += tree_h*n; *sig_msg_len += tree_h*n; // prepare signature of remaining layers for(i = 1; i < params->d; i++){ // put WOTS signature in place memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize); sig_msg += params->xmss_par.wots_par.keysize; *sig_msg_len += params->xmss_par.wots_par.keysize; // put AUTH nodes in place memcpy(sig_msg, states[i].auth, tree_h*n); sig_msg += tree_h*n; *sig_msg_len += tree_h*n; } SET_LAYER_ADDRESS(ots_addr, 0); SET_TREE_ADDRESS(ots_addr, (idx_tree + 1)); // mandatory update for NEXT_0 (does not count towards h-k) bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, ots_addr); updates = tree_h - k; for (i = 0; i < params->d; i++) { if (((idx + 1) & ((1 << ((i+1)*tree_h)) - 1)) == 0) { memcpy(&tmp, states+params->d + i, sizeof(bds_state)); memcpy(states+params->d + i, states + i, sizeof(bds_state)); memcpy(states + i, &tmp, sizeof(bds_state)); SET_TREE_ADDRESS(ots_addr, ((idx + 1) >> ((i+2) * tree_h))); SET_OTS_ADDRESS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1))); SET_LAYER_ADDRESS(ots_addr, (i+1)); get_seed(ots_seed, sk+params->index_len, ots_addr); wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); states[params->d + i].stackoffset = 0; states[params->d + i].next_leaf = 0; updates--; // WOTS-signing counts as one update // this bds_round is needed to initialise the state, but should not perform updates // note that one should still pass the (reduced) current idx, as bds_round sets up for idx+1 bds_round(&states[i+1], ((idx >> ((i+1)*tree_h))) & ((1 << tree_h)-1), sk_seed, &(params->xmss_par), 0, pub_seed, ots_addr); for (j = 0; j < tree_h-k; j++) { states[i].treehash[j].completed = 1; } } } SET_LAYER_ADDRESS(ots_addr, 0); SET_TREE_ADDRESS(ots_addr, idx_tree); first_nonwots = (tree_h - k) - updates; if (first_nonwots == 0) { updates = bds_round(&states[0], idx_leaf, sk_seed, &(params->xmss_par), (tree_h - k) >> 1, pub_seed, ots_addr); } for (i = 1; updates > 0 && i < params->d; i++) { idx_leaf = (idx_tree & ((1 << tree_h)-1)); idx_tree = idx_tree >> tree_h; if (first_nonwots > i) { continue; } SET_LAYER_ADDRESS(ots_addr, i); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_ADDRESS(ots_addr, idx_leaf); while (updates > 0 && !bds_treehash_update(&states[i], sk_seed, &(params->xmss_par), pub_seed, ots_addr)) { updates--; } SET_TREE_ADDRESS(ots_addr, (idx_tree + 1)); while (updates > 0 && !bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, ots_addr)) { updates--; } } //Whipe secret elements? //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); memcpy(sig_msg,msg,msglen); *sig_msg_len += msglen; return 0; } /** * Verifies a given message signature pair under a given public key. */ int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned int tree_h = params->xmss_par.h; unsigned int idx_len = params->index_len; unsigned long long idx_tree; unsigned long long idx_leaf; unsigned long long i, m_len; unsigned long long idx=0; unsigned char wots_pk[params->xmss_par.wots_par.keysize]; unsigned char pkhash[n]; unsigned char root[n]; unsigned char msg_h[m]; unsigned char pub_seed[n]; memcpy(pub_seed,pk+n,n); // Init addresses unsigned char ots_addr[16] = {0,0,0,0}; unsigned char ltree_addr[16]; unsigned char node_addr[16]; // Extract index for(i = 0; i < idx_len; i++){ idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); } printf("verify:: idx = %llu\n",idx); sig_msg += idx_len; sig_msg_len -= idx_len; // hash message (recall, R is now on pole position at sig_msg unsigned long long tmp_sig_len = m+ (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); m_len = sig_msg_len - tmp_sig_len; hash_m(msg_h, sig_msg + tmp_sig_len, m_len, sig_msg, m, m); sig_msg += m; sig_msg_len -= m; //----------------------- // Verify signature //----------------------- // Prepare Address idx_tree = idx >> tree_h; idx_leaf = (idx & ((1 << tree_h)-1)); SET_LAYER_ADDRESS(ots_addr,0); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); SET_OTS_ADDRESS(ots_addr,idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; sig_msg_len -= params->xmss_par.wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); sig_msg += tree_h*n; sig_msg_len -= tree_h*n; for(i = 1; i < params->d; i++){ // Prepare Address idx_leaf = (idx_tree & ((1 << tree_h)-1)); idx_tree = idx_tree >> tree_h; SET_LAYER_ADDRESS(ots_addr,i); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); SET_OTS_ADDRESS(ots_addr,idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; sig_msg_len -= params->xmss_par.wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); sig_msg += tree_h*n; sig_msg_len -= tree_h*n; } for(i=0;i