/* xmss.c version 20151120 Andreas Hülsing Public domain. */ #include "xmss.h" #include #include #include #include #include "randombytes.h" #include "wots.h" #include "hash.h" #include "prg.h" #include "xmss_commons.h" // For testing #include "stdio.h" /** * Macros used to manipulate the respective fields * in the 16byte hash address */ #define SET_LAYER_ADDRESS(a, v) {\ a[6] = (a[6] & 3) | ((v << 2) & 252);\ a[5] = (a[5] & 252) | ((v >> 6) & 3);} #define SET_TREE_ADDRESS(a, v) {\ a[9] = (a[9] & 3) | ((v << 2) & 252);\ a[8] = (v >> 6) & 255;\ a[7] = (v >> 14) & 255;\ a[6] = (a[6] & 252) | ((v >> 22) & 3);} #define SET_OTS_BIT(a, b) {\ a[9] = (a[9] & 253) | ((b << 1) & 2);} #define SET_OTS_ADDRESS(a, v) {\ a[12] = (a[12] & 1) | ((v << 1) & 254);\ a[11] = (v >> 7) & 255;\ a[10] = (v >> 15) & 255;\ a[9] = (a[9] & 254) | ((v >> 23) & 1);} #define ZEROISE_OTS_ADDR(a) {\ a[12] = (a[12] & 254);\ a[13] = 0;\ a[14] = 0;\ a[15] = 0;} #define SET_LTREE_BIT(a, b) {\ a[9] = (a[9] & 254) | (b & 1);} #define SET_LTREE_ADDRESS(a, v) {\ a[12] = v & 255;\ a[11] = (v >> 8) & 255;\ a[10] = (v >> 16) & 255;} #define SET_LTREE_TREE_HEIGHT(a, v) {\ a[13] = (a[13] & 3) | ((v << 2) & 252);} #define SET_LTREE_TREE_INDEX(a, v) {\ a[15] = (a[15] & 3) | ((v << 2) & 252);\ a[14] = (v >> 6) & 255;\ a[13] = (a[13] & 252) | ((v >> 14) & 3);} #define SET_NODE_PADDING(a) {\ a[10] = 0;\ a[11] = a[11] & 3;} #define SET_NODE_TREE_HEIGHT(a, v) {\ a[12] = (a[12] & 3) | ((v << 2) & 252);\ a[11] = (a[11] & 252) | ((v >> 6) & 3);} #define SET_NODE_TREE_INDEX(a, v) {\ a[15] = (a[15] & 3) | ((v << 2) & 252);\ a[14] = (v >> 6) & 255;\ a[13] = (v >> 14) & 255;\ a[12] = (a[12] & 252) | ((v >> 22) & 3);} /** * Used for pseudorandom keygeneration, * generates the seed for the WOTS keypair at address addr * * takes n byte sk_seed and returns n byte seed using 16 byte address addr. */ static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, unsigned char addr[16]) { // Make sure that chain addr, hash addr, and key bit are 0! ZEROISE_OTS_ADDR(addr); // Generate pseudorandom value prg_with_counter(seed, sk_seed, n, addr); } /** * Initialize xmss params struct * parameter names are the same as in the draft */ void xmss_set_params(xmss_params *params, int m, int n, int h, int w) { params->h = h; params->m = m; params->n = n; wots_params wots_par; wots_set_params(&wots_par, m, n, w); params->wots_par = wots_par; } /** * Initialize xmssmt_params struct * parameter names are the same as in the draft * * Especially h is the total tree height, i.e. the XMSS trees have height h/d */ void xmssmt_set_params(xmssmt_params *params, int m, int n, int h, int d, int w) { if (h % d) { fprintf(stderr, "d must devide h without remainder!\n"); return; } params->h = h; params->d = d; params->m = m; params->n = n; params->index_len = (h + 7) / 8; xmss_params xmss_par; xmss_set_params(&xmss_par, m, n, (h/d), w); params->xmss_par = xmss_par; } /** * Computes a leaf from a WOTS public key using an L-tree. */ static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16]) { unsigned int l = params->wots_par.len; unsigned int n = params->n; unsigned long i = 0; unsigned int height = 0; //ADRS.setTreeHeight(0); SET_LTREE_TREE_HEIGHT(addr, height); unsigned long bound; while (l > 1) { bound = l >> 1; //floor(l / 2); for (i = 0; i < bound; i++) { //ADRS.setTreeIndex(i); SET_LTREE_TREE_INDEX(addr, i); //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); hash_2n_n(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); } //if ( l % 2 == 1 ) { if (l & 1) { //pk[floor(l / 2) + 1] = pk[l]; memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); //l = ceil(l / 2); l=(l>>1)+1; } else { //l = ceil(l / 2); l=(l>>1); } //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); height++; SET_LTREE_TREE_HEIGHT(addr, height); } //return pk[0]; memcpy(leaf, wots_pk, n); } /** * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. */ static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, unsigned char ltree_addr[16], unsigned char ots_addr[16]) { unsigned char seed[params->n]; unsigned char pk[params->wots_par.keysize]; get_seed(seed, sk_seed, params->n, ots_addr); wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); l_tree(leaf, pk, params, pub_seed, ltree_addr); } /** * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. * Currently only used for key generation. * */ static void treehash(unsigned char *node, int height, int index, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const unsigned char addr[16]) { unsigned int idx = index; unsigned int n = params->n; // use three different addresses because at this point we use all three formats in parallel unsigned char ots_addr[16]; unsigned char ltree_addr[16]; unsigned char node_addr[16]; memcpy(ots_addr, addr, 10); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); unsigned int lastnode, i; unsigned char stack[(height+1)*n]; unsigned int stacklevels[height+1]; unsigned int stackoffset=0; lastnode = idx+(1 << height); for (; idx < lastnode; idx++) { SET_LTREE_ADDRESS(ltree_addr, idx); SET_OTS_ADDRESS(ots_addr, idx); gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); stacklevels[stackoffset] = 0; stackoffset++; while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) { SET_NODE_TREE_HEIGHT(node_addr, stacklevels[stackoffset-1]); SET_NODE_TREE_INDEX(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); hash_2n_n(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed, node_addr, n); stacklevels[stackoffset-2]++; stackoffset--; } } for (i=0; i < n; i++) node[i] = stack[i]; } /** * Computes a root node given a leaf and an authapth */ static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, unsigned char addr[16]) { unsigned int n = params->n; unsigned int i, j; unsigned char buffer[2*n]; // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. // Otherwise, it is the other way around if (leafidx & 1) { for (j = 0; j < n; j++) buffer[n+j] = leaf[j]; for (j = 0; j < n; j++) buffer[j] = authpath[j]; } else { for (j = 0; j < n; j++) buffer[j] = leaf[j]; for (j = 0; j < n; j++) buffer[n+j] = authpath[j]; } authpath += n; for (i=0; i < params->h-1; i++) { SET_NODE_TREE_HEIGHT(addr, i); leafidx >>= 1; SET_NODE_TREE_INDEX(addr, leafidx); if (leafidx&1) { hash_2n_n(buffer+n, buffer, pub_seed, addr, n); for (j = 0; j < n; j++) buffer[j] = authpath[j]; } else { hash_2n_n(buffer, buffer, pub_seed, addr, n); for (j = 0; j < n; j++) buffer[j+n] = authpath[j]; } authpath += n; } SET_NODE_TREE_HEIGHT(addr, (params->h-1)); leafidx >>= 1; SET_NODE_TREE_INDEX(addr, leafidx); hash_2n_n(root, buffer, pub_seed, addr, n); } /** * Computes the authpath and the root. This method is using a lot of space as we build the whole tree and then select the authpath nodes. * For more efficient algorithms see e.g. the chapter on hash-based signatures in Bernstein, Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009. * It returns the authpath in "authpath" with the node on level 0 at index 0. */ static void compute_authpath_wots(unsigned char *root, unsigned char *authpath, unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, unsigned char addr[16]) { unsigned int i, j, level; unsigned int n = params->n; unsigned int h = params->h; unsigned char tree[2*(1< 1; i>>=1) { SET_NODE_TREE_HEIGHT(node_addr, level); // Inner loop: for each pair of sibling nodes for (j = 0; j < i; j+=2) { SET_NODE_TREE_INDEX(node_addr, j>>1); hash_2n_n(tree + (i>>1)*n + (j>>1) * n, tree + i*n + j*n, pub_seed, node_addr, n); } level++; } // copy authpath for (i=0; i < h; i++) memcpy(authpath + i*n, tree + ((1<>i)*n + ((leaf_idx >> i) ^ 1) * n, n); // copy root memcpy(root, tree+n, n); } /* * Generates a XMSS key pair for a given parameter set. * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED] * Format pk: [root || PUB_SEED] omitting algo oid. */ int xmss_keypair(unsigned char *pk, unsigned char *sk, xmss_params *params) { unsigned int n = params->n; unsigned int m = params->m; // Set idx = 0 sk[0] = 0; sk[1] = 0; sk[2] = 0; sk[3] = 0; // Init SK_SEED (n byte), SK_PRF (m byte), and PUB_SEED (n byte) randombytes(sk+4, 2*n+m); // Copy PUB_SEED to public key memcpy(pk+n, sk+4+n+m, n); unsigned char addr[16] = {0, 0, 0, 0}; // Compute root treehash(pk, params->h, 0, sk+4, params, sk+4+n+m, addr); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) { unsigned int n = params->n; unsigned int m = params->m; // Extract SK unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; unsigned char sk_seed[n]; memcpy(sk_seed, sk+4, n); unsigned char sk_prf[m]; memcpy(sk_prf, sk+4+n, m); unsigned char pub_seed[n]; memcpy(pub_seed, sk+4+n+m, n); // Update SK sk[0] = ((idx + 1) >> 24) & 255; sk[1] = ((idx + 1) >> 16) & 255; sk[2] = ((idx + 1) >> 8) & 255; sk[3] = (idx + 1) & 255; // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // Init working params unsigned long long i; unsigned char R[m]; unsigned char msg_h[m]; unsigned char root[n]; unsigned char ots_seed[n]; unsigned char ots_addr[16] = {0, 0, 0, 0}; // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom key prf_m(R, msg, msglen, sk_prf, m); // Then use it for message digest hash_m(msg_h, msg, msglen, R, m, m); // Start collecting signature *sig_msg_len = 0; // Copy index to signature sig_msg[0] = (idx >> 24) & 255; sig_msg[1] = (idx >> 16) & 255; sig_msg[2] = (idx >> 8) & 255; sig_msg[3] = idx & 255; sig_msg += 4; *sig_msg_len += 4; // Copy R to signature for (i = 0; i < m; i++) sig_msg[i] = R[i]; sig_msg += m; *sig_msg_len += m; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Prepare Address SET_OTS_BIT(ots_addr, 1); SET_OTS_ADDRESS(ots_addr, idx); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, n, ots_addr); // Compute WOTS signature wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr); sig_msg += params->wots_par.keysize; *sig_msg_len += params->wots_par.keysize; compute_authpath_wots(root, sig_msg, idx, sk_seed, params, pub_seed, ots_addr); sig_msg += params->h*n; *sig_msg_len += params->h*n; //Whipe secret elements? //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); memcpy(sig_msg, msg, msglen); *sig_msg_len += msglen; return 0; } /** * Verifies a given message signature pair under a given public key. */ int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned long long i, m_len; unsigned long idx=0; unsigned char wots_pk[params->wots_par.keysize]; unsigned char pkhash[n]; unsigned char root[n]; unsigned char msg_h[m]; unsigned char pub_seed[n]; memcpy(pub_seed, pk+n, n); // Init addresses unsigned char ots_addr[16] = {0, 0, 0, 0}; unsigned char ltree_addr[16]; unsigned char node_addr[16]; SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); // Extract index idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; printf("verify:: idx = %lu\n", idx); sig_msg += 4; sig_msg_len -= 4; // hash message (recall, R is now on pole position at sig_msg unsigned long long tmp_sig_len = m+params->wots_par.keysize+params->h*n; m_len = sig_msg_len - tmp_sig_len; hash_m(msg_h, sig_msg + tmp_sig_len, m_len, sig_msg, m, m); sig_msg += m; sig_msg_len -= m; //----------------------- // Verify signature //----------------------- // Prepare Address SET_OTS_ADDRESS(ots_addr, idx); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); sig_msg += params->wots_par.keysize; sig_msg_len -= params->wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx); l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); sig_msg += params->h*n; sig_msg_len -= params->h*n; for (i=0; i < n; i++) if (root[i] != pk[i]) goto fail; *msglen = sig_msg_len; for (i=0; i < *msglen; i++) msg[i] = sig_msg[i]; return 0; fail: *msglen = sig_msg_len; for (i=0; i < *msglen; i++) msg[i] = 0; *msglen = -1; return -1; } /* * Generates a XMSSMT key pair for a given parameter set. * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED] * Format pk: [root || PUB_SEED] omitting algo oid. */ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, xmssmt_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned int i; // Set idx = 0 for (i = 0; i < params->index_len; i++) { sk[i] = 0; } // Init SK_SEED (n byte), SK_PRF (m byte), and PUB_SEED (n byte) randombytes(sk+params->index_len, 2*n+m); // Copy PUB_SEED to public key memcpy(pk+n, sk+params->index_len+n+m, n); // Set address to point on the single tree on layer d-1 unsigned char addr[16] = {0, 0, 0, 0}; SET_LAYER_ADDRESS(addr, (params->d-1)); // Compute root treehash(pk, params->xmss_par.h, 0, sk+params->index_len, &(params->xmss_par), pk+n, addr); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmssmt_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned int tree_h = params->xmss_par.h; unsigned int idx_len = params->index_len; unsigned long long idx_tree; unsigned long long idx_leaf; unsigned long long i; unsigned char sk_seed[n]; unsigned char sk_prf[m]; unsigned char pub_seed[n]; // Init working params unsigned char R[m]; unsigned char msg_h[m]; unsigned char root[n]; unsigned char ots_seed[n]; unsigned char ots_addr[16] = {0, 0, 0, 0}; // Extract SK unsigned long long idx = 0; for (i = 0; i < idx_len; i++) { idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); } memcpy(sk_seed, sk+idx_len, n); memcpy(sk_prf, sk+idx_len+n, m); memcpy(pub_seed, sk+idx_len+n+m, n); // Update SK for (i = 0; i < idx_len; i++) { sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; } // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom key prf_m(R, msg, msglen, sk_prf, m); // Then use it for message digest hash_m(msg_h, msg, msglen, R, m, m); // Start collecting signature *sig_msg_len = 0; // Copy index to signature for (i = 0; i < idx_len; i++) { sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; } sig_msg += idx_len; *sig_msg_len += idx_len; // Copy R to signature for (i=0; i < m; i++) sig_msg[i] = R[i]; sig_msg += m; *sig_msg_len += m; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Handle lowest layer separately as it is slightly different... // Prepare Address SET_OTS_BIT(ots_addr, 1); idx_tree = idx >> tree_h; idx_leaf = (idx & ((1 << tree_h)-1)); SET_LAYER_ADDRESS(ots_addr, 0); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_ADDRESS(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, n, ots_addr); // Compute WOTS signature wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; *sig_msg_len += params->xmss_par.wots_par.keysize; compute_authpath_wots(root, sig_msg, idx_leaf, sk_seed, &(params->xmss_par), pub_seed, ots_addr); sig_msg += tree_h*n; *sig_msg_len += tree_h*n; // Now loop over remaining layers... unsigned int j; for (j = 1; j < params->d; j++) { // Prepare Address idx_leaf = (idx_tree & ((1 << tree_h)-1)); idx_tree = idx_tree >> tree_h; SET_LAYER_ADDRESS(ots_addr, j); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_ADDRESS(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, n, ots_addr); // Compute WOTS signature wots_sign(sig_msg, root, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; *sig_msg_len += params->xmss_par.wots_par.keysize; compute_authpath_wots(root, sig_msg, idx_leaf, sk_seed, &(params->xmss_par), pub_seed, ots_addr); sig_msg += tree_h*n; *sig_msg_len += tree_h*n; } //Whipe secret elements? //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); memcpy(sig_msg, msg, msglen); *sig_msg_len += msglen; return 0; } /** * Verifies a given message signature pair under a given public key. */ int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) { unsigned int n = params->n; unsigned int m = params->m; unsigned int tree_h = params->xmss_par.h; unsigned int idx_len = params->index_len; unsigned long long idx_tree; unsigned long long idx_leaf; unsigned long long i, m_len; unsigned long long idx=0; unsigned char wots_pk[params->xmss_par.wots_par.keysize]; unsigned char pkhash[n]; unsigned char root[n]; unsigned char msg_h[m]; unsigned char pub_seed[n]; memcpy(pub_seed, pk+n, n); // Init addresses unsigned char ots_addr[16] = {0, 0, 0, 0}; unsigned char ltree_addr[16]; unsigned char node_addr[16]; // Extract index for (i = 0; i < idx_len; i++) { idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); } printf("verify:: idx = %llu\n", idx); sig_msg += idx_len; sig_msg_len -= idx_len; // hash message (recall, R is now on pole position at sig_msg unsigned long long tmp_sig_len = m+ (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); m_len = sig_msg_len - tmp_sig_len; hash_m(msg_h, sig_msg + tmp_sig_len, m_len, sig_msg, m, m); sig_msg += m; sig_msg_len -= m; //----------------------- // Verify signature //----------------------- // Prepare Address idx_tree = idx >> tree_h; idx_leaf = (idx & ((1 << tree_h)-1)); SET_LAYER_ADDRESS(ots_addr, 0); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); SET_OTS_ADDRESS(ots_addr, idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; sig_msg_len -= params->xmss_par.wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); sig_msg += tree_h*n; sig_msg_len -= tree_h*n; for (i = 1; i < params->d; i++) { // Prepare Address idx_leaf = (idx_tree & ((1 << tree_h)-1)); idx_tree = idx_tree >> tree_h; SET_LAYER_ADDRESS(ots_addr, i); SET_TREE_ADDRESS(ots_addr, idx_tree); SET_OTS_BIT(ots_addr, 1); memcpy(ltree_addr, ots_addr, 10); SET_OTS_BIT(ltree_addr, 0); SET_LTREE_BIT(ltree_addr, 1); memcpy(node_addr, ltree_addr, 10); SET_LTREE_BIT(node_addr, 0); SET_NODE_PADDING(node_addr); SET_OTS_ADDRESS(ots_addr, idx_leaf); // Check WOTS signature wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); sig_msg += params->xmss_par.wots_par.keysize; sig_msg_len -= params->xmss_par.wots_par.keysize; // Compute Ltree SET_LTREE_ADDRESS(ltree_addr, idx_leaf); l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); // Compute root validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); sig_msg += tree_h*n; sig_msg_len -= tree_h*n; } for (i=0; i < n; i++) if (root[i] != pk[i]) goto fail; *msglen = sig_msg_len; for (i=0; i < *msglen; i++) msg[i] = sig_msg[i]; return 0; fail: *msglen = sig_msg_len; for (i=0; i < *msglen; i++) msg[i] = 0; *msglen = -1; return -1; }