#include #include #include #include "hash.h" #include "hash_address.h" #include "params.h" #include "randombytes.h" #include "wots.h" #include "xmss_commons.h" #include "xmss_core.h" /** * Merkle's TreeHash algorithm. Currently only used for key generation. * Computes the root node of the top-most subtree. */ static void treehash_root(const xmss_params *params, unsigned char *root, const unsigned char *sk_seed, const unsigned char *pub_seed) { unsigned char stack[(params->tree_height+1)*params->n]; unsigned int heights[params->tree_height+1]; unsigned int offset = 0; /* The subtree has at most 2^20 leafs, so uint32_t suffices. */ uint32_t idx; /* We need all three types of addresses in parallel. */ uint32_t ots_addr[8] = {0}; uint32_t ltree_addr[8] = {0}; uint32_t node_addr[8] = {0}; /* To support the multi-tree setting, select the top tree. */ set_layer_addr(ots_addr, params->d - 1); set_layer_addr(ltree_addr, params->d - 1); set_layer_addr(node_addr, params->d - 1); set_type(ots_addr, 0); set_type(ltree_addr, 1); set_type(node_addr, 2); for (idx = 0; idx < (uint32_t)(1 << params->tree_height); idx++) { /* Add the next leaf node to the stack. */ set_ltree_addr(ltree_addr, idx); set_ots_addr(ots_addr, idx); gen_leaf_wots(params, stack + offset*params->n, sk_seed, pub_seed, ltree_addr, ots_addr); heights[offset] = 0; offset++; /* While the top-most nodes are of equal height.. */ while (offset >= 2 && heights[offset - 1] == heights[offset - 2]) { /* Hash the top-most nodes from the stack together. */ set_tree_height(node_addr, heights[offset - 1]); set_tree_index(node_addr, (idx >> (heights[offset - 1] + 1))); hash_h(params, stack + (offset-2)*params->n, stack + (offset-2)*params->n, pub_seed, node_addr); /* Note that the top-most node is now one layer higher. */ heights[offset-2]++; offset--; } } memcpy(root, stack, params->n); } /** * Computes the authpath and the root. This method is using a lot of space as we * build the whole tree and then select the authpath nodes. For more efficient * algorithms see e.g. the chapter on hash-based signatures in Bernstein, * Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009. * * Returns the authpath in "authpath" with the node on level 0 at index 0. */ static void compute_authpath_wots(const xmss_params *params, unsigned char *root, unsigned char *authpath, unsigned long leaf_idx, const unsigned char *sk_seed, unsigned char *pub_seed, uint32_t addr[8]) { uint32_t i, j, level; unsigned char tree[2*(1 << params->tree_height)*params->n]; uint32_t ots_addr[8]; uint32_t ltree_addr[8]; uint32_t node_addr[8]; memcpy(ots_addr, addr, 12); set_type(ots_addr, 0); memcpy(ltree_addr, addr, 12); set_type(ltree_addr, 1); memcpy(node_addr, addr, 12); set_type(node_addr, 2); // Compute all leaves for (i = 0; i < (1U << params->tree_height); i++) { set_ltree_addr(ltree_addr, i); set_ots_addr(ots_addr, i); gen_leaf_wots(params, tree+((1 << params->tree_height)*params->n + i*params->n), sk_seed, pub_seed, ltree_addr, ots_addr); } level = 0; // Compute tree: // Outer loop: For each inner layer for (i = (1 << params->tree_height); i > 1; i>>=1) { set_tree_height(node_addr, level); // Inner loop: for each pair of sibling nodes for (j = 0; j < i; j+=2) { set_tree_index(node_addr, j>>1); hash_h(params, tree + (i>>1)*params->n + (j>>1) * params->n, tree + i*params->n + j*params->n, pub_seed, node_addr); } level++; } // copy authpath for (i = 0; i < params->tree_height; i++) { memcpy(authpath + i*params->n, tree + ((1 << params->tree_height)>>i)*params->n + ((leaf_idx >> i) ^ 1) * params->n, params->n); } // copy root memcpy(root, tree+params->n, params->n); } /* * Generates a XMSS key pair for a given parameter set. * Format sk: [(32bit) index || SK_SEED || SK_PRF || PUB_SEED || root] * Format pk: [root || PUB_SEED], omitting algorithm OID. */ int xmss_core_keypair(const xmss_params *params, unsigned char *pk, unsigned char *sk) { /* Initialize index to 0. */ memset(sk, 0, params->index_len); sk += 4; /* Initialize SK_SEED, SK_PRF and PUB_SEED. */ randombytes(sk, 3 * params->n); memcpy(pk + params->n, sk + 2*params->n, params->n); /* Compute root node. */ treehash_root(params, pk, sk, pk + params->n); memcpy(sk + 3*params->n, pk, params->n); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmss_core_sign(const xmss_params *params, unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) { uint16_t i = 0; // Extract SK uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; unsigned char sk_seed[params->n]; unsigned char sk_prf[params->n]; unsigned char pub_seed[params->n]; unsigned char hash_key[3*params->n]; // index as 32 bytes string unsigned char idx_bytes_32[32]; ull_to_bytes(idx_bytes_32, 32, idx); memcpy(sk_seed, sk+4, params->n); memcpy(sk_prf, sk+4+params->n, params->n); memcpy(pub_seed, sk+4+2*params->n, params->n); // Update SK sk[0] = ((idx + 1) >> 24) & 255; sk[1] = ((idx + 1) >> 16) & 255; sk[2] = ((idx + 1) >> 8) & 255; sk[3] = (idx + 1) & 255; // Secret key for this non-forward-secure version is now updated. // A production implementation should consider using a file handle instead, // and write the updated secret key at this point! // Init working params unsigned char R[params->n]; unsigned char msg_h[params->n]; unsigned char root[params->n]; unsigned char ots_seed[params->n]; uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom value prf(params, R, idx_bytes_32, sk_prf, params->n); // Generate hash key (R || root || idx) memcpy(hash_key, R, params->n); memcpy(hash_key+params->n, sk+4+3*params->n, params->n); ull_to_bytes(hash_key+2*params->n, params->n, idx); // Then use it for message digest h_msg(params, msg_h, m, mlen, hash_key, 3*params->n); // Start collecting signature *smlen = 0; // Copy index to signature sm[0] = (idx >> 24) & 255; sm[1] = (idx >> 16) & 255; sm[2] = (idx >> 8) & 255; sm[3] = idx & 255; sm += 4; *smlen += 4; // Copy R to signature for (i = 0; i < params->n; i++) sm[i] = R[i]; sm += params->n; *smlen += params->n; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Prepare Address set_type(ots_addr, 0); set_ots_addr(ots_addr, idx); // Compute seed for OTS key pair get_seed(params, ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr); sm += params->wots_keysize; *smlen += params->wots_keysize; compute_authpath_wots(params, root, sm, idx, sk_seed, pub_seed, ots_addr); sm += params->tree_height*params->n; *smlen += params->tree_height*params->n; memcpy(sm, m, mlen); *smlen += mlen; return 0; } /* * Generates a XMSSMT key pair for a given parameter set. * Format sk: [(ceil(h/8) bit) index || SK_SEED || SK_PRF || PUB_SEED] * Format pk: [root || PUB_SEED] omitting algorithm OID. */ int xmssmt_core_keypair(const xmss_params *params, unsigned char *pk, unsigned char *sk) { /* Initialize index to 0. */ memset(sk, 0, params->index_len); sk += 4; /* Initialize SK_SEED, SK_PRF and PUB_SEED. */ randombytes(sk, 3 * params->n); memcpy(pk + params->n, sk + 2*params->n, params->n); /* Compute root node of the top-most subtree. */ treehash_root(params, pk, sk, pk + params->n); memcpy(sk + 3*params->n, pk, params->n); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmssmt_core_sign(const xmss_params *params, unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) { uint64_t idx_tree; uint32_t idx_leaf; uint64_t i; unsigned char sk_seed[params->n]; unsigned char sk_prf[params->n]; unsigned char pub_seed[params->n]; // Init working params unsigned char R[params->n]; unsigned char hash_key[3*params->n]; unsigned char msg_h[params->n]; unsigned char root[params->n]; unsigned char ots_seed[params->n]; uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; unsigned char idx_bytes_32[32]; // Extract SK unsigned long long idx = 0; for (i = 0; i < params->index_len; i++) { idx |= ((unsigned long long)sk[i]) << 8*(params->index_len - 1 - i); } memcpy(sk_seed, sk+params->index_len, params->n); memcpy(sk_prf, sk+params->index_len+params->n, params->n); memcpy(pub_seed, sk+params->index_len+2*params->n, params->n); // Update SK for (i = 0; i < params->index_len; i++) { sk[i] = ((idx + 1) >> 8*(params->index_len - 1 - i)) & 255; } // Secret key for this non-forward-secure version is now updated. // A production implementation should consider using a file handle instead, // and write the updated secret key at this point! // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom value ull_to_bytes(idx_bytes_32, 32, idx); prf(params, R, idx_bytes_32, sk_prf, params->n); // Generate hash key (R || root || idx) memcpy(hash_key, R, params->n); memcpy(hash_key+params->n, sk+params->index_len+3*params->n, params->n); ull_to_bytes(hash_key+2*params->n, params->n, idx); // Then use it for message digest h_msg(params, msg_h, m, mlen, hash_key, 3*params->n); // Start collecting signature *smlen = 0; // Copy index to signature for (i = 0; i < params->index_len; i++) { sm[i] = (idx >> 8*(params->index_len - 1 - i)) & 255; } sm += params->index_len; *smlen += params->index_len; // Copy R to signature for (i = 0; i < params->n; i++) { sm[i] = R[i]; } sm += params->n; *smlen += params->n; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Handle lowest layer separately as it is slightly different... // Prepare Address set_type(ots_addr, 0); idx_tree = idx >> params->tree_height; idx_leaf = (idx & ((1 << params->tree_height)-1)); set_layer_addr(ots_addr, 0); set_tree_addr(ots_addr, idx_tree); set_ots_addr(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(params, ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr); sm += params->wots_keysize; *smlen += params->wots_keysize; compute_authpath_wots(params, root, sm, idx_leaf, sk_seed, pub_seed, ots_addr); sm += params->tree_height*params->n; *smlen += params->tree_height*params->n; // Now loop over remaining layers... unsigned int j; for (j = 1; j < params->d; j++) { // Prepare Address idx_leaf = (idx_tree & ((1 << params->tree_height)-1)); idx_tree = idx_tree >> params->tree_height; set_layer_addr(ots_addr, j); set_tree_addr(ots_addr, idx_tree); set_ots_addr(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(params, ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(params, sm, root, ots_seed, pub_seed, ots_addr); sm += params->wots_keysize; *smlen += params->wots_keysize; compute_authpath_wots(params, root, sm, idx_leaf, sk_seed, pub_seed, ots_addr); sm += params->tree_height*params->n; *smlen += params->tree_height*params->n; } memcpy(sm, m, mlen); *smlen += mlen; return 0; }