/* xmss_fast.c version 20160722 Andreas Hülsing Joost Rijneveld Public domain. */ #include "xmss_fast.h" #include #include #include #include "randombytes.h" #include "wots.h" #include "hash.h" #include "xmss_commons.h" #include "hash_address.h" #include "params.h" /** * Initialize BDS state struct * parameter names are the same as used in the description of the BDS traversal */ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) { state->stack = stack; state->stackoffset = stackoffset; state->stacklevels = stacklevels; state->auth = auth; state->keep = keep; state->treehash = treehash; state->retain = retain; state->next_leaf = next_leaf; } static int treehash_minheight_on_stack(bds_state* state, const treehash_inst *treehash) { unsigned int r = XMSS_TREEHEIGHT, i; for (i = 0; i < treehash->stackusage; i++) { if (state->stacklevels[state->stackoffset - i - 1] < r) { r = state->stacklevels[state->stackoffset - i - 1]; } } return r; } /** * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. * Currently only used for key generation. * */ static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const unsigned char *pub_seed, const uint32_t addr[8]) { unsigned int idx = index; // use three different addresses because at this point we use all three formats in parallel uint32_t ots_addr[8]; uint32_t ltree_addr[8]; uint32_t node_addr[8]; // only copy layer and tree address parts memcpy(ots_addr, addr, 12); // type = ots setType(ots_addr, 0); memcpy(ltree_addr, addr, 12); setType(ltree_addr, 1); memcpy(node_addr, addr, 12); setType(node_addr, 2); uint32_t lastnode, i; unsigned char stack[(height+1)*XMSS_N]; unsigned int stacklevels[height+1]; unsigned int stackoffset=0; unsigned int nodeh; lastnode = idx+(1<treehash[i].h = i; state->treehash[i].completed = 1; state->treehash[i].stackusage = 0; } i = 0; for (; idx < lastnode; idx++) { setLtreeADRS(ltree_addr, idx); setOTSADRS(ots_addr, idx); gen_leaf_wots(stack+stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr); stacklevels[stackoffset] = 0; stackoffset++; if (XMSS_TREEHEIGHT - XMSS_BDS_K > 0 && i == 3) { memcpy(state->treehash[0].node, stack+stackoffset*XMSS_N, XMSS_N); } while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) { nodeh = stacklevels[stackoffset-1]; if (i >> nodeh == 1) { memcpy(state->auth + nodeh*XMSS_N, stack+(stackoffset-1)*XMSS_N, XMSS_N); } else { if (nodeh < XMSS_TREEHEIGHT - XMSS_BDS_K && i >> nodeh == 3) { memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*XMSS_N, XMSS_N); } else if (nodeh >= XMSS_TREEHEIGHT - XMSS_BDS_K) { memcpy(state->retain + ((1 << (XMSS_TREEHEIGHT - 1 - nodeh)) + nodeh - XMSS_TREEHEIGHT + (((i >> nodeh) - 3) >> 1)) * XMSS_N, stack+(stackoffset-1)*XMSS_N, XMSS_N); } } setTreeHeight(node_addr, stacklevels[stackoffset-1]); setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); hash_h(stack+(stackoffset-2)*XMSS_N, stack+(stackoffset-2)*XMSS_N, pub_seed, node_addr); stacklevels[stackoffset-2]++; stackoffset--; } i++; } for (i = 0; i < XMSS_N; i++) node[i] = stack[i]; } static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const unsigned char *pub_seed, const uint32_t addr[8]) { uint32_t ots_addr[8]; uint32_t ltree_addr[8]; uint32_t node_addr[8]; // only copy layer and tree address parts memcpy(ots_addr, addr, 12); // type = ots setType(ots_addr, 0); memcpy(ltree_addr, addr, 12); setType(ltree_addr, 1); memcpy(node_addr, addr, 12); setType(node_addr, 2); setLtreeADRS(ltree_addr, treehash->next_idx); setOTSADRS(ots_addr, treehash->next_idx); unsigned char nodebuffer[2 * XMSS_N]; unsigned int nodeheight = 0; gen_leaf_wots(nodebuffer, sk_seed, pub_seed, ltree_addr, ots_addr); while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { memcpy(nodebuffer + XMSS_N, nodebuffer, XMSS_N); memcpy(nodebuffer, state->stack + (state->stackoffset-1)*XMSS_N, XMSS_N); setTreeHeight(node_addr, nodeheight); setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1))); hash_h(nodebuffer, nodebuffer, pub_seed, node_addr); nodeheight++; treehash->stackusage--; state->stackoffset--; } if (nodeheight == treehash->h) { // this also implies stackusage == 0 memcpy(treehash->node, nodebuffer, XMSS_N); treehash->completed = 1; } else { memcpy(state->stack + state->stackoffset*XMSS_N, nodebuffer, XMSS_N); treehash->stackusage++; state->stacklevels[state->stackoffset] = nodeheight; state->stackoffset++; treehash->next_idx++; } } /** * Performs one treehash update on the instance that needs it the most. * Returns 1 if such an instance was not found **/ static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, unsigned char *pub_seed, const uint32_t addr[8]) { uint32_t i, j; unsigned int level, l_min, low; unsigned int used = 0; for (j = 0; j < updates; j++) { l_min = XMSS_TREEHEIGHT; level = XMSS_TREEHEIGHT - XMSS_BDS_K; for (i = 0; i < XMSS_TREEHEIGHT - XMSS_BDS_K; i++) { if (state->treehash[i].completed) { low = XMSS_TREEHEIGHT; } else if (state->treehash[i].stackusage == 0) { low = i; } else { low = treehash_minheight_on_stack(state, &(state->treehash[i])); } if (low < l_min) { level = i; l_min = low; } } if (level == XMSS_TREEHEIGHT - XMSS_BDS_K) { break; } treehash_update(&(state->treehash[level]), state, sk_seed, pub_seed, addr); used++; } return updates - used; } /** * Updates the state (typically NEXT_i) by adding a leaf and updating the stack * Returns 1 if all leaf nodes have already been processed **/ static char bds_state_update(bds_state *state, const unsigned char *sk_seed, unsigned char *pub_seed, const uint32_t addr[8]) { uint32_t ltree_addr[8]; uint32_t node_addr[8]; uint32_t ots_addr[8]; int nodeh; int idx = state->next_leaf; if (idx == 1 << XMSS_TREEHEIGHT) { return 1; } // only copy layer and tree address parts memcpy(ots_addr, addr, 12); // type = ots setType(ots_addr, 0); memcpy(ltree_addr, addr, 12); setType(ltree_addr, 1); memcpy(node_addr, addr, 12); setType(node_addr, 2); setOTSADRS(ots_addr, idx); setLtreeADRS(ltree_addr, idx); gen_leaf_wots(state->stack+state->stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr); state->stacklevels[state->stackoffset] = 0; state->stackoffset++; if (XMSS_TREEHEIGHT - XMSS_BDS_K > 0 && idx == 3) { memcpy(state->treehash[0].node, state->stack+state->stackoffset*XMSS_N, XMSS_N); } while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { nodeh = state->stacklevels[state->stackoffset-1]; if (idx >> nodeh == 1) { memcpy(state->auth + nodeh*XMSS_N, state->stack+(state->stackoffset-1)*XMSS_N, XMSS_N); } else { if (nodeh < XMSS_TREEHEIGHT - XMSS_BDS_K && idx >> nodeh == 3) { memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*XMSS_N, XMSS_N); } else if (nodeh >= XMSS_TREEHEIGHT - XMSS_BDS_K) { memcpy(state->retain + ((1 << (XMSS_TREEHEIGHT - 1 - nodeh)) + nodeh - XMSS_TREEHEIGHT + (((idx >> nodeh) - 3) >> 1)) * XMSS_N, state->stack+(state->stackoffset-1)*XMSS_N, XMSS_N); } } setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]); setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); hash_h(state->stack+(state->stackoffset-2)*XMSS_N, state->stack+(state->stackoffset-2)*XMSS_N, pub_seed, node_addr); state->stacklevels[state->stackoffset-2]++; state->stackoffset--; } state->next_leaf++; return 0; } /** * Returns the auth path for node leaf_idx and computes the auth path for the * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo * in "Post Quantum Cryptography", Springer 2009. */ static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, unsigned char *pub_seed, uint32_t addr[8]) { unsigned int i; unsigned int tau = XMSS_TREEHEIGHT; unsigned int startidx; unsigned int offset, rowidx; unsigned char buf[2 * XMSS_N]; uint32_t ots_addr[8]; uint32_t ltree_addr[8]; uint32_t node_addr[8]; // only copy layer and tree address parts memcpy(ots_addr, addr, 12); // type = ots setType(ots_addr, 0); memcpy(ltree_addr, addr, 12); setType(ltree_addr, 1); memcpy(node_addr, addr, 12); setType(node_addr, 2); for (i = 0; i < XMSS_TREEHEIGHT; i++) { if (! ((leaf_idx >> i) & 1)) { tau = i; break; } } if (tau > 0) { memcpy(buf, state->auth + (tau-1) * XMSS_N, XMSS_N); // we need to do this before refreshing state->keep to prevent overwriting memcpy(buf + XMSS_N, state->keep + ((tau-1) >> 1) * XMSS_N, XMSS_N); } if (!((leaf_idx >> (tau + 1)) & 1) && (tau < XMSS_TREEHEIGHT - 1)) { memcpy(state->keep + (tau >> 1)*XMSS_N, state->auth + tau*XMSS_N, XMSS_N); } if (tau == 0) { setLtreeADRS(ltree_addr, leaf_idx); setOTSADRS(ots_addr, leaf_idx); gen_leaf_wots(state->auth, sk_seed, pub_seed, ltree_addr, ots_addr); } else { setTreeHeight(node_addr, (tau-1)); setTreeIndex(node_addr, leaf_idx >> tau); hash_h(state->auth + tau * XMSS_N, buf, pub_seed, node_addr); for (i = 0; i < tau; i++) { if (i < XMSS_TREEHEIGHT - XMSS_BDS_K) { memcpy(state->auth + i * XMSS_N, state->treehash[i].node, XMSS_N); } else { offset = (1 << (XMSS_TREEHEIGHT - 1 - i)) + i - XMSS_TREEHEIGHT; rowidx = ((leaf_idx >> i) - 1) >> 1; memcpy(state->auth + i * XMSS_N, state->retain + (offset + rowidx) * XMSS_N, XMSS_N); } } for (i = 0; i < ((tau < XMSS_TREEHEIGHT - XMSS_BDS_K) ? tau : (XMSS_TREEHEIGHT - XMSS_BDS_K)); i++) { startidx = leaf_idx + 1 + 3 * (1 << i); if (startidx < 1U << XMSS_TREEHEIGHT) { state->treehash[i].h = i; state->treehash[i].next_idx = startidx; state->treehash[i].completed = 0; state->treehash[i].stackusage = 0; } } } } /* * Generates a XMSS key pair for a given parameter set. * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] * Format pk: [root || PUB_SEED] omitting algo oid. */ int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state) { // Set idx = 0 sk[0] = 0; sk[1] = 0; sk[2] = 0; sk[3] = 0; // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) randombytes(sk+4, 3*XMSS_N); // Copy PUB_SEED to public key memcpy(pk+XMSS_N, sk+4+2*XMSS_N, XMSS_N); uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // Compute root treehash_setup(pk, XMSS_TREEHEIGHT, 0, state, sk+4, sk+4+2*XMSS_N, addr); // copy root to sk memcpy(sk+4+3*XMSS_N, pk, XMSS_N); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) { uint16_t i = 0; // Extract SK unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; unsigned char sk_seed[XMSS_N]; memcpy(sk_seed, sk+4, XMSS_N); unsigned char sk_prf[XMSS_N]; memcpy(sk_prf, sk+4+XMSS_N, XMSS_N); unsigned char pub_seed[XMSS_N]; memcpy(pub_seed, sk+4+2*XMSS_N, XMSS_N); // index as 32 bytes string unsigned char idx_bytes_32[32]; to_byte(idx_bytes_32, idx, 32); unsigned char hash_key[3*XMSS_N]; // Update SK sk[0] = ((idx + 1) >> 24) & 255; sk[1] = ((idx + 1) >> 16) & 255; sk[2] = ((idx + 1) >> 8) & 255; sk[3] = (idx + 1) & 255; // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // Init working params unsigned char R[XMSS_N]; unsigned char msg_h[XMSS_N]; unsigned char ots_seed[XMSS_N]; uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom value prf(R, idx_bytes_32, sk_prf, XMSS_N); // Generate hash key (R || root || idx) memcpy(hash_key, R, XMSS_N); memcpy(hash_key+XMSS_N, sk+4+3*XMSS_N, XMSS_N); to_byte(hash_key+2*XMSS_N, idx, XMSS_N); // Then use it for message digest h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); // Start collecting signature *smlen = 0; // Copy index to signature sm[0] = (idx >> 24) & 255; sm[1] = (idx >> 16) & 255; sm[2] = (idx >> 8) & 255; sm[3] = idx & 255; sm += 4; *smlen += 4; // Copy R to signature for (i = 0; i < XMSS_N; i++) sm[i] = R[i]; sm += XMSS_N; *smlen += XMSS_N; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Prepare Address setType(ots_addr, 0); setOTSADRS(ots_addr, idx); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); sm += XMSS_WOTS_KEYSIZE; *smlen += XMSS_WOTS_KEYSIZE; // the auth path was already computed during the previous round memcpy(sm, state->auth, XMSS_TREEHEIGHT*XMSS_N); if (idx < (1U << XMSS_TREEHEIGHT) - 1) { bds_round(state, idx, sk_seed, pub_seed, ots_addr); bds_treehash_update(state, (XMSS_TREEHEIGHT - XMSS_BDS_K) >> 1, sk_seed, pub_seed, ots_addr); } sm += XMSS_TREEHEIGHT*XMSS_N; *smlen += XMSS_TREEHEIGHT*XMSS_N; memcpy(sm, m, mlen); *smlen += mlen; return 0; } /* * Generates a XMSSMT key pair for a given parameter set. * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] * Format pk: [root || PUB_SEED] omitting algo oid. */ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs) { unsigned char ots_seed[XMSS_N]; int i; // Set idx = 0 for (i = 0; i < XMSS_INDEX_LEN; i++) { sk[i] = 0; } // Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte) randombytes(sk+XMSS_INDEX_LEN, 3*XMSS_N); // Copy PUB_SEED to public key memcpy(pk+XMSS_N, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // Start with the bottom-most layer setLayerADRS(addr, 0); // Set up state and compute wots signatures for all but topmost tree root for (i = 0; i < XMSS_D - 1; i++) { // Compute seed for OTS key pair treehash_setup(pk, XMSS_TREEHEIGHT, 0, states + i, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); setLayerADRS(addr, (i+1)); get_seed(ots_seed, sk+XMSS_INDEX_LEN, addr); wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, pk, ots_seed, pk+XMSS_N, addr); } // Address now points to the single tree on layer d-1 treehash_setup(pk, XMSS_TREEHEIGHT, 0, states + i, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); memcpy(sk+XMSS_INDEX_LEN+3*XMSS_N, pk, XMSS_N); return 0; } /** * Signs a message. * Returns * 1. an array containing the signature followed by the message AND * 2. an updated secret key! * */ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) { uint64_t idx_tree; uint32_t idx_leaf; uint64_t i, j; int needswap_upto = -1; unsigned int updates; unsigned char sk_seed[XMSS_N]; unsigned char sk_prf[XMSS_N]; unsigned char pub_seed[XMSS_N]; // Init working params unsigned char R[XMSS_N]; unsigned char msg_h[XMSS_N]; unsigned char hash_key[3*XMSS_N]; unsigned char ots_seed[XMSS_N]; uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; unsigned char idx_bytes_32[32]; bds_state tmp; // Extract SK unsigned long long idx = 0; for (i = 0; i < XMSS_INDEX_LEN; i++) { idx |= ((unsigned long long)sk[i]) << 8*(XMSS_INDEX_LEN - 1 - i); } memcpy(sk_seed, sk+XMSS_INDEX_LEN, XMSS_N); memcpy(sk_prf, sk+XMSS_INDEX_LEN+XMSS_N, XMSS_N); memcpy(pub_seed, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); // Update SK for (i = 0; i < XMSS_INDEX_LEN; i++) { sk[i] = ((idx + 1) >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; } // -- Secret key for this non-forward-secure version is now updated. // -- A productive implementation should use a file handle instead and write the updated secret key at this point! // --------------------------------- // Message Hashing // --------------------------------- // Message Hash: // First compute pseudorandom value to_byte(idx_bytes_32, idx, 32); prf(R, idx_bytes_32, sk_prf, XMSS_N); // Generate hash key (R || root || idx) memcpy(hash_key, R, XMSS_N); memcpy(hash_key+XMSS_N, sk+XMSS_INDEX_LEN+3*XMSS_N, XMSS_N); to_byte(hash_key+2*XMSS_N, idx, XMSS_N); // Then use it for message digest h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); // Start collecting signature *smlen = 0; // Copy index to signature for (i = 0; i < XMSS_INDEX_LEN; i++) { sm[i] = (idx >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; } sm += XMSS_INDEX_LEN; *smlen += XMSS_INDEX_LEN; // Copy R to signature for (i = 0; i < XMSS_N; i++) sm[i] = R[i]; sm += XMSS_N; *smlen += XMSS_N; // ---------------------------------- // Now we start to "really sign" // ---------------------------------- // Handle lowest layer separately as it is slightly different... // Prepare Address setType(ots_addr, 0); idx_tree = idx >> XMSS_TREEHEIGHT; idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); setLayerADRS(ots_addr, 0); setTreeADRS(ots_addr, idx_tree); setOTSADRS(ots_addr, idx_leaf); // Compute seed for OTS key pair get_seed(ots_seed, sk_seed, ots_addr); // Compute WOTS signature wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); sm += XMSS_WOTS_KEYSIZE; *smlen += XMSS_WOTS_KEYSIZE; memcpy(sm, states[0].auth, XMSS_TREEHEIGHT*XMSS_N); sm += XMSS_TREEHEIGHT*XMSS_N; *smlen += XMSS_TREEHEIGHT*XMSS_N; // prepare signature of remaining layers for (i = 1; i < XMSS_D; i++) { // put WOTS signature in place memcpy(sm, wots_sigs + (i-1)*XMSS_WOTS_KEYSIZE, XMSS_WOTS_KEYSIZE); sm += XMSS_WOTS_KEYSIZE; *smlen += XMSS_WOTS_KEYSIZE; // put AUTH nodes in place memcpy(sm, states[i].auth, XMSS_TREEHEIGHT*XMSS_N); sm += XMSS_TREEHEIGHT*XMSS_N; *smlen += XMSS_TREEHEIGHT*XMSS_N; } updates = (XMSS_TREEHEIGHT - XMSS_BDS_K) >> 1; setTreeADRS(addr, (idx_tree + 1)); // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists if ((1 + idx_tree) * (1 << XMSS_TREEHEIGHT) + idx_leaf < (1ULL << XMSS_FULLHEIGHT)) { bds_state_update(&states[XMSS_D], sk_seed, pub_seed, addr); } for (i = 0; i < XMSS_D; i++) { // check if we're not at the end of a tree if (! (((idx + 1) & ((1ULL << ((i+1)*XMSS_TREEHEIGHT)) - 1)) == 0)) { idx_leaf = (idx >> (XMSS_TREEHEIGHT * i)) & ((1 << XMSS_TREEHEIGHT)-1); idx_tree = (idx >> (XMSS_TREEHEIGHT * (i+1))); setLayerADRS(addr, i); setTreeADRS(addr, idx_tree); if (i == (unsigned int) (needswap_upto + 1)) { bds_round(&states[i], idx_leaf, sk_seed, pub_seed, addr); } updates = bds_treehash_update(&states[i], updates, sk_seed, pub_seed, addr); setTreeADRS(addr, (idx_tree + 1)); // if a NEXT-tree exists for this level; if ((1 + idx_tree) * (1 << XMSS_TREEHEIGHT) + idx_leaf < (1ULL << (XMSS_FULLHEIGHT - XMSS_TREEHEIGHT * i))) { if (i > 0 && updates > 0 && states[XMSS_D + i].next_leaf < (1ULL << XMSS_FULLHEIGHT)) { bds_state_update(&states[XMSS_D + i], sk_seed, pub_seed, addr); updates--; } } } else if (idx < (1ULL << XMSS_FULLHEIGHT) - 1) { memcpy(&tmp, states+XMSS_D + i, sizeof(bds_state)); memcpy(states+XMSS_D + i, states + i, sizeof(bds_state)); memcpy(states + i, &tmp, sizeof(bds_state)); setLayerADRS(ots_addr, (i+1)); setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * XMSS_TREEHEIGHT))); setOTSADRS(ots_addr, (((idx >> ((i+1) * XMSS_TREEHEIGHT)) + 1) & ((1 << XMSS_TREEHEIGHT)-1))); get_seed(ots_seed, sk+XMSS_INDEX_LEN, ots_addr); wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, states[i].stack, ots_seed, pub_seed, ots_addr); states[XMSS_D + i].stackoffset = 0; states[XMSS_D + i].next_leaf = 0; updates--; // WOTS-signing counts as one update needswap_upto = i; for (j = 0; j < XMSS_TREEHEIGHT-XMSS_BDS_K; j++) { states[i].treehash[j].completed = 1; } } } memcpy(sm, m, mlen); *smlen += mlen; return 0; }