boringssl/crypto/ec/ec_test.cc

497 lines
18 KiB
C++
Raw Normal View History

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <string.h>
#include <vector>
#include <openssl/c++/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../test/scoped_types.h"
namespace bssl {
// kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field
// omitted.
static const uint8_t kECKeyWithoutPublic[] = {
0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0,
0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e,
0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77,
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
};
// kECKeySpecifiedCurve is the above key with P-256's parameters explicitly
// spelled out rather than using a named curve.
static const uint8_t kECKeySpecifiedCurve[] = {
0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa,
0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb,
0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc,
0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02,
0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01,
0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb,
0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15,
0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78,
0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04,
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5,
0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2,
0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00,
0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc,
0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc,
0x63, 0x25, 0x51, 0x02, 0x01, 0x01,
};
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is incorrectly encoded without zero
// padding.
static const uint8_t kECKeyMissingZeros[] = {
0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a,
0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04,
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63,
0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1,
0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f,
0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57,
0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};
// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is encoded with the required zero
// padding.
static const uint8_t kECKeyWithZeros[] = {
0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1,
0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d,
0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3,
0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e,
0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
0x37, 0xbf, 0x51, 0xf5,
};
// DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the
// result or nullptr on error.
static ScopedEC_KEY DecodeECPrivateKey(const uint8_t *in, size_t in_len) {
CBS cbs;
CBS_init(&cbs, in, in_len);
ScopedEC_KEY ret(EC_KEY_parse_private_key(&cbs, NULL));
if (!ret || CBS_len(&cbs) != 0) {
return nullptr;
}
return ret;
}
// EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It
// returns true on success or false on error.
static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) {
ScopedCBB cbb;
uint8_t *der;
size_t der_len;
if (!CBB_init(cbb.get(), 0) ||
!EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) ||
!CBB_finish(cbb.get(), &der, &der_len)) {
return false;
}
out->assign(der, der + der_len);
OPENSSL_free(der);
return true;
}
static bool Testd2i_ECPrivateKey() {
ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithoutPublic,
sizeof(kECKeyWithoutPublic));
if (!key) {
fprintf(stderr, "Failed to parse private key.\n");
ERR_print_errors_fp(stderr);
return false;
}
std::vector<uint8_t> out;
if (!EncodeECPrivateKey(&out, key.get())) {
fprintf(stderr, "Failed to serialize private key.\n");
ERR_print_errors_fp(stderr);
return false;
}
if (std::vector<uint8_t>(kECKeyWithoutPublic,
kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) !=
out) {
fprintf(stderr, "Serialisation of key doesn't match original.\n");
return false;
}
const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get());
if (pub_key == NULL) {
fprintf(stderr, "Public key missing.\n");
return false;
}
ScopedBIGNUM x(BN_new());
ScopedBIGNUM y(BN_new());
if (!x || !y) {
return false;
}
if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()),
pub_key, x.get(), y.get(), NULL)) {
fprintf(stderr, "Failed to get public key in affine coordinates.\n");
return false;
}
ScopedOpenSSLString x_hex(BN_bn2hex(x.get()));
ScopedOpenSSLString y_hex(BN_bn2hex(y.get()));
if (!x_hex || !y_hex) {
return false;
}
if (0 != strcmp(
x_hex.get(),
"c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681") ||
0 != strcmp(
y_hex.get(),
"e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88")) {
fprintf(stderr, "Incorrect public key: %s %s\n", x_hex.get(), y_hex.get());
return false;
}
return true;
}
static bool TestZeroPadding() {
// Check that the correct encoding round-trips.
ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithZeros,
sizeof(kECKeyWithZeros));
std::vector<uint8_t> out;
if (!key || !EncodeECPrivateKey(&out, key.get())) {
ERR_print_errors_fp(stderr);
return false;
}
if (std::vector<uint8_t>(kECKeyWithZeros,
kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
fprintf(stderr, "Serialisation of key was incorrect.\n");
return false;
}
// Keys without leading zeros also parse, but they encode correctly.
key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros));
if (!key || !EncodeECPrivateKey(&out, key.get())) {
ERR_print_errors_fp(stderr);
return false;
}
if (std::vector<uint8_t>(kECKeyWithZeros,
kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
fprintf(stderr, "Serialisation of key was incorrect.\n");
return false;
}
return true;
}
static bool TestSpecifiedCurve() {
// Test keys with specified curves may be decoded.
ScopedEC_KEY key =
DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve));
if (!key) {
ERR_print_errors_fp(stderr);
return false;
}
// The group should have been interpreted as P-256.
if (EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get())) !=
NID_X9_62_prime256v1) {
fprintf(stderr, "Curve name incorrect.\n");
return false;
}
// Encoding the key should still use named form.
std::vector<uint8_t> out;
if (!EncodeECPrivateKey(&out, key.get())) {
ERR_print_errors_fp(stderr);
return false;
}
if (std::vector<uint8_t>(kECKeyWithoutPublic,
kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) !=
out) {
fprintf(stderr, "Serialisation of key was incorrect.\n");
return false;
}
return true;
}
static bool TestSetAffine(const int nid) {
ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
if (!key) {
return false;
}
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
if (!EC_KEY_generate_key(key.get())) {
fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid);
ERR_print_errors_fp(stderr);
return false;
}
if (!EC_POINT_is_on_curve(group, EC_KEY_get0_public_key(key.get()),
nullptr)) {
fprintf(stderr, "generated point is not on curve with nid %d", nid);
ERR_print_errors_fp(stderr);
return false;
}
ScopedBIGNUM x(BN_new());
ScopedBIGNUM y(BN_new());
if (!EC_POINT_get_affine_coordinates_GFp(group,
EC_KEY_get0_public_key(key.get()),
x.get(), y.get(), nullptr)) {
fprintf(stderr, "EC_POINT_get_affine_coordinates_GFp failed with nid %d\n",
nid);
ERR_print_errors_fp(stderr);
return false;
}
ScopedEC_POINT point(EC_POINT_new(group));
if (!point) {
return false;
}
if (!EC_POINT_set_affine_coordinates_GFp(group, point.get(), x.get(), y.get(),
nullptr)) {
fprintf(stderr, "EC_POINT_set_affine_coordinates_GFp failed with nid %d\n",
nid);
ERR_print_errors_fp(stderr);
return false;
}
// Subtract one from |y| to make the point no longer on the curve.
if (!BN_sub(y.get(), y.get(), BN_value_one())) {
return false;
}
ScopedEC_POINT invalid_point(EC_POINT_new(group));
if (!invalid_point) {
return false;
}
if (EC_POINT_set_affine_coordinates_GFp(group, invalid_point.get(), x.get(),
y.get(), nullptr)) {
fprintf(stderr,
"EC_POINT_set_affine_coordinates_GFp succeeded with invalid "
"coordinates with nid %d\n",
nid);
ERR_print_errors_fp(stderr);
return false;
}
return true;
}
static bool TestArbitraryCurve() {
// Make a P-256 key and extract the affine coordinates.
ScopedEC_KEY key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
if (!key || !EC_KEY_generate_key(key.get())) {
return false;
}
// Make an arbitrary curve which is identical to P-256.
static const uint8_t kP[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
static const uint8_t kA[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
};
static const uint8_t kB[] = {
0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd,
0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b,
};
static const uint8_t kX[] = {
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6,
0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb,
0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96,
};
static const uint8_t kY[] = {
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb,
0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31,
0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};
static const uint8_t kOrder[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17,
0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51,
};
ScopedBN_CTX ctx(BN_CTX_new());
ScopedBIGNUM p(BN_bin2bn(kP, sizeof(kP), nullptr));
ScopedBIGNUM a(BN_bin2bn(kA, sizeof(kA), nullptr));
ScopedBIGNUM b(BN_bin2bn(kB, sizeof(kB), nullptr));
ScopedBIGNUM gx(BN_bin2bn(kX, sizeof(kX), nullptr));
ScopedBIGNUM gy(BN_bin2bn(kY, sizeof(kY), nullptr));
ScopedBIGNUM order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr));
ScopedBIGNUM cofactor(BN_new());
if (!ctx || !p || !a || !b || !gx || !gy || !order || !cofactor ||
!BN_set_word(cofactor.get(), 1)) {
return false;
}
ScopedEC_GROUP group(
EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get()));
if (!group) {
return false;
}
ScopedEC_POINT generator(EC_POINT_new(group.get()));
if (!generator ||
!EC_POINT_set_affine_coordinates_GFp(group.get(), generator.get(),
gx.get(), gy.get(), ctx.get()) ||
!EC_GROUP_set_generator(group.get(), generator.get(), order.get(),
cofactor.get())) {
return false;
}
// |group| should not have a curve name.
if (EC_GROUP_get_curve_name(group.get()) != NID_undef) {
return false;
}
// Copy |key| to |key2| using |group|.
ScopedEC_KEY key2(EC_KEY_new());
ScopedEC_POINT point(EC_POINT_new(group.get()));
ScopedBIGNUM x(BN_new()), y(BN_new());
if (!key2 || !point || !x || !y ||
!EC_KEY_set_group(key2.get(), group.get()) ||
!EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get())) ||
!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()),
EC_KEY_get0_public_key(key.get()),
x.get(), y.get(), nullptr) ||
!EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), x.get(),
y.get(), nullptr) ||
!EC_KEY_set_public_key(key2.get(), point.get())) {
fprintf(stderr, "Could not copy key.\n");
return false;
}
// The key must be valid according to the new group too.
if (!EC_KEY_check_key(key2.get())) {
fprintf(stderr, "Copied key is not valid.\n");
return false;
}
return true;
}
static bool TestAddingEqualPoints(int nid) {
ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
if (!key) {
return false;
}
const EC_GROUP *const group = EC_KEY_get0_group(key.get());
if (!EC_KEY_generate_key(key.get())) {
fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid);
ERR_print_errors_fp(stderr);
return false;
}
ScopedEC_POINT p1(EC_POINT_new(group));
ScopedEC_POINT p2(EC_POINT_new(group));
ScopedEC_POINT double_p1(EC_POINT_new(group));
ScopedEC_POINT p1_plus_p2(EC_POINT_new(group));
if (!p1 || !p2 || !double_p1 || !p1_plus_p2) {
return false;
}
if (!EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get())) ||
!EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))) {
fprintf(stderr, "EC_POINT_COPY failed with nid %d\n", nid);
ERR_print_errors_fp(stderr);
return false;
}
ScopedBN_CTX ctx(BN_CTX_new());
if (!ctx) {
return false;
}
if (!EC_POINT_dbl(group, double_p1.get(), p1.get(), ctx.get()) ||
!EC_POINT_add(group, p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())) {
fprintf(stderr, "Point operation failed with nid %d\n", nid);
ERR_print_errors_fp(stderr);
return false;
}
if (EC_POINT_cmp(group, double_p1.get(), p1_plus_p2.get(), ctx.get()) != 0) {
fprintf(stderr, "A+A != 2A for nid %d", nid);
return false;
}
return true;
}
static bool ForEachCurve(bool (*test_func)(int nid)) {
const size_t num_curves = EC_get_builtin_curves(nullptr, 0);
std::vector<EC_builtin_curve> curves(num_curves);
EC_get_builtin_curves(curves.data(), num_curves);
for (const auto& curve : curves) {
if (!test_func(curve.nid)) {
fprintf(stderr, "Test failed for %s\n", curve.comment);
return false;
}
}
return true;
}
static int Main() {
CRYPTO_library_init();
if (!Testd2i_ECPrivateKey() ||
!TestZeroPadding() ||
!TestSpecifiedCurve() ||
!ForEachCurve(TestSetAffine) ||
!ForEachCurve(TestAddingEqualPoints) ||
!TestArbitraryCurve()) {
fprintf(stderr, "failed\n");
return 1;
}
printf("PASS\n");
return 0;
}
} // namespace bssl
int main() {
return bssl::Main();
}